

Towards Implicit Visual Memory-Based Authentication

Claude Castelluccia, Inria Grenoble Markus Dürmuth and <u>Maximilian Golla</u>, Ruhr-University Bochum Fatma Deniz, University of California, Berkeley

Types of Authentication

Competing requirements of security and usability. [1]

Common Factors:

- 1) Knowledge (Password, PIN)
- 2) Biometrics (Fingerprint, Face)
- 3) Possession (Token)

Reinforced by:

- 2-Factor Authentication
- Risk-based Authentication
- Continuous Authentication

Knowledge-based Authentication

Example: Passwords

- 1) Create a secure password
- 2) Remember the password
- 3) Provide at time of authentication

All steps involved are hard for users.

- → High cognitive burden
- → Password reuse
- → Password resets

Fallback Authentication

Used to regain access if the primary means of authentication is lost!

Different:

- Memorability
- Rate limiting
- Time required to authenticate
- → Often the weakest link in the chain (Sarah Palin, Mat Honan, ...)
- → We need to design better systems!

Let's Play

Before we start, a short game.

Bells

Bells

Mooney Images

Thresholded two-tone images showing a single object.

Recognition:

- Hard to recognize at first sight
- Sudden recognition (aha! / Eureka-effect)
- Intrinsically / By marking the contour of object / Showing the original image

Value for Authentication?

- Trigger brain processes involved in implicit memory.

Implicit Memory

Unintentional recollection of information.

Can be observed in *habitual* behavior, i.e., riding a bike, playing an instrument.

We are not aware of the information stored in our memory.

We can trigger the implicit memory by a process called *priming*.

Ludmer et al. Neuron 2011 [3]

MooneyAuth

Relieves users of the cognitive burden of remembering an explicit password.

1) Enrollment / Priming:

- Prime on set of random Mooney images.
- We show every image twice.

- Primed + non-primed Mooney images are presented to the user.
- User is requested to label the images.
- Scoring algorithm based on surprisal of observed events.
- User authenticated: score > threshold.

Enrollment / Priming

- Smooth transition

- Takes 3.5 seconds per image.

- In a user study we primed 10 images

Primed + non-primed images are presented.

Task:

User has to **label** the image

or

skip by pressing the

I don't know

button.

Assumption:

User labels primed images more often correctly (and faster).

Scoring

- Score derived from the self-information (surprisal) of the observed events.
- There are four events that can occur:

	Correct Label	Incorrect Label
Primed	p _i	1-p _i
Non-Primed	n _i	1-n _i

$$I(E_{primed,correct}) = -\log_2 P(correct \mid primed)$$

 \rightarrow A "good" Mooney image has a high p_i , but low n_i value.

Attacker Model

The security does not rely on secrecy of the hidden object.

We provide the attacker with the solution for every Mooney image:

- Mooney image
- Original grayscale image
- Correct label

The scheme can not be broken by computer vision algorithms!

Attacker Model

Secret: Knowing which images the user was primed on.

During enrollment images are selected by the server:

- No user selection bias
- Random guessing
- Rate limit guessing attempts

Main Results

Does implicit memory-based authentication work?

User Studies

Pre Study

230 participants20 days

Goals:

- Get p_i, n_i for Scoring
- Test Label Matching

Long-Term Study

~130 participants 8.5 months

Goals:

- Long-Term Effects

Main Study

70 participants 21 days

Goals:

- Performance Measure

Previous Work

Our Result

Long-Term Results

How long does the priming last?

Priming Effect Decline Over Time:

Priming Effect Decline Over Time:

Priming Effect Decline Over Time:

Benefits and Limitations

Benefits:

- High memorability
- Server selected secret (no user bias)

Limitations:

- Cumbersome to label (software keyboard, time required)
- Unexplored: Interference effects (use for multiple services)
- Phishing
- Shoulder surfing
- Secure storage of secret

Let's Play Again!

Back to the game.

Elephant

Takeaway

Demo? mooneyauth.org

Mooney Image Generation

- 1) Image search with nouns from "MRC Psycholinguistic Database".
- 1) Convert images to gray-scale.
- 2) Smoothing via Gaussian filter.
- 3) Apply Otsu's histogram based thresholding algorithm.
- 4) Filter for mean recognition rate of 5 sec. and longer. [5]

