
On the Accuracy of Password Strength Meters
Maximilian Golla

Ruhr University Bochum
Bochum, Germany

maximilian.golla@rub.de

Markus Dürmuth
Ruhr University Bochum

Bochum, Germany
markus.duermuth@rub.de

ABSTRACT
Password strengthmeters are an important tool to help users choose
secure passwords. Strengthmeters can only then provide reasonable
guidance when they are accurate, i. e., their score correctly reflect
password strength. A strength meter with low accuracy may do
more harm than good and guide the user to choose passwords with
a high score but low actual security. While a substantial number of
different strength meters is proposed in the literature and deployed
in practice, we are lacking a clear picture of which strength meters
provide high accuracy, and thus are most helpful for guiding users.
Furthermore, we lack a clear understanding of how to compare
accuracies of strength meters.

In this work, (i) we propose a set of properties that a strength
meter needs to fulfill to be considered to have high accuracy, (ii) we
use these properties to select a suitable measure that can deter-
mine the accuracy of strength meters, and (iii) we use the selected
measure to compare a wide range of strength meters proposed in
the academic literature, provided by password managers, operating
systems, and those used on websites. We expect our work to be
helpful in the selection of good password strength meters by service
operators, and to aid the further development of improved strength
meters.

CCS CONCEPTS
• Security and privacy → Authentication; Usability in security
and privacy;Web application security;

KEYWORDS
Strength Meter; Password; User Authentication

ACM Reference Format:
Maximilian Golla and Markus Dürmuth. 2018. On the Accuracy of Password
Strength Meters. In 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’18), October 15–19, 2018, Toronto, ON, Canada. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3243734.3243769

1 INTRODUCTION
Password-based authentication is still in widespread use, specifi-
cally for online authentication on the Internet and for hard-disk
encryption. Passwords are easy to understand for laypersons, easy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243769

to implement for the operator, don’t require additional hardware,
and are supported by a broad ecosystem such as password man-
agers. In all likelihood, password-based authentication will stay for
the foreseeable future.

Password strength meters (PSMs) are designed to help with one
of the central problems of passwords, namely weak user-chosen
passwords. From leaked password lists we learn that up to 20 %
of passwords are covered by a list of only 5 000 common pass-
words [63]. A PSM (also called strength meter, password checker,
or similar) displays an estimation of the strength of a password
when chosen by the user, and either helps or forces the user to pick
passwords that are strong enough to provide an acceptable level of
security.

The accuracy with which a PSM measures the actual strength
of passwords is crucial; as people are known to be influenced by
PSMs [61] (or even forced to comply), an inaccurate PSM can do
more harm than good. If weak passwords are rated strong users
might end up choosing this password, actually harming security;
similarly, if strong passwords are rated weak the meter drives
away people from those strong passwords. Traditionally, ad-hoc
approaches such as counts of lower- and uppercase characters, dig-
its, and symbols (LUDS) have been used to measure the strength
of passwords. Despite being well-known that these do not accu-
rately capture password strength [68], they are still used in practice.
More recently, more sound constructions for PSMs based on pre-
cise models capturing user choice have been proposed, e. g., based
on Markov models [13], based on probabilistic context-free gram-
mars (PCFGs) [34, 65], neural networks [46, 59], and others [70].

Surprisingly, very little work has been performed on a fair com-
parison of these different proposals, and it remains unclear which
password meter is best suited for the task of estimating password
strength. Even worse, we lack consensus on how to determine the
accuracy of strength meters, with different techniques used ranging
from Spearman and Kendall correlation to ad-hoc measures.

In this work, we propose a sound methodology for measuring
the accuracy of PSMs, based on a clear set of requirements and
careful selection of a metric, and we will use this metric to compare
a variety of different meters. In more detail, our contributions are:

(i) We discuss properties an accurate strength meter needs to
fulfill, and create a number of test cases from these requirements.

(ii) We report tests of 19 candidate measures (and have tested
several more) from a wide range of types and select good metrics
for the accuracy of strength meters.

(iii) We address the challenge of estimating the accuracy from
limited datasets and show that meters can be reasonably approxi-
mated with a small number of random samples.

(iv) We provide an extensive overview of the current state of
the art of strength meters.

https://doi.org/10.1145/3243734.3243769
https://doi.org/10.1145/3243734.3243769

(v) We use the derived measures and provide a comparison of a
broad selection of 45 passwordmeters in 81 variations, ranging from
academic proposals over meters deployed in password managers
and operating systems to meters in practical use on websites.
More important than the results of this work, are the methods we
developed. They provide means to select suitable similarity metrics
that match the requirements for specific use cases. We hope that
it will foster the future development of strength meters and will
simplify the selection process for service operators.

2 RELATEDWORK
In the following, we review some material related to password
strength including password choice, password guessability, and
metrics that were proposed for measuring strength.

2.1 Password Choice
Jakobsson and Dhiman [37] found that users produce passwords
using only a small set of rules and components such as dictionary
words, replacement strategies, and misspellings. Veras et al. [64] ex-
plored the semantics of passwords. They found male/female names
and concepts relating to love, profanity, animals, food, and money.
Recently, Ur et al. [60] investigated the relationship between users’
perceptions of the strength of specific passwords and their actual
strength. They report serious misconceptions on the consequences
of constructing passwords by using common phrases and including
digits and keyboard patterns. A possible countermeasure to prevent
users from choosing easy to guess passwords are so-called pass-
word composition policies (e. g., requiring the password to contain
a digit or symbol). Komanduri et al. [42] analyzed the effect of such
policies by investigating their impact on password strength, user
behavior, and user sentiment. Based on their findings, they pro-
duced recommendations for password-composition policies that
result in stronger passwords without burdening users too much. In
2014, Florêncio et al. [24] highlighted the importance to limit the
number of online guesses that can be made by rate-limiting and
blacklisting the most common passwords like “123456”. Recently,
Habib et al. [33] analyzed how users react to password creation
attempts failing because of blacklists. They conclude that blacklist
checks need to go beyond exact comparisons and also verify for
any form of reuse of blacklisted passwords. Furthermore, they rec-
ommend providing textual feedback to help users understand reuse
and simple modifications of blacklisted password attempts.

2.2 Password Guessing
Guessing passwords is in many ways related to password strength.
Assuming an attacker cannot just invert a password hash, the opti-
mal strategy to test passwords is in decreasing order of likelihood,
i. e., most frequent passwords first. There are different proposals to
enumerate passwords with decreasing likelihood, in other words,
with increasing strength. The most relevant for GPU-based pass-
word cracking use large dictionaries and ad-hoc mangling rules
to generate password candidates. Narayanan and Shmatikov [48]
proposed Markov-models to overcome some of the problems of
dictionary-based attacks. Dürmuth et al. [21] improved the ap-
proach by generating password candidates according to their oc-
currence probabilities, i. e., by outputting the most likely passwords

first. Weir et al. [69] suggested a method exploiting structural pat-
terns from a password leak using probabilistic context-free gram-
mars (PCFGs). Veras et al. [64] extended the approach by building
a semantically meaningful PCFG-based password guesser. An em-
pirical study on the effectiveness of different attacks was done by
Dell’Amico et al. [19]. Another study targeting probabilistic pass-
word modeling approaches was done Ma et al. [44]. Recently, Ur
et al. [62] did a large scale comparison and found running a single
guessing algorithm, often yields a very poor estimate of password
strength. In 2016, Melicher et al. [46] proposed using recurrent
neural networks (RNNs) for probabilistic password modeling.

2.3 Password Strength
Trying to estimate password strength as ameasure to defend against
guessing attacks has a long history. In 1979, Morris and Thomp-
son [47] did password checking by attempting to crack hashed
passwords. The ones successfully cracked were marked as weak,
and the users were notified. In the following, one started to check
the strength of a password before it is accepted by a system via pro-
active password checkers or password strength meters, using certain
rules-sets that try to exclude weak passwords [7, 41, 56]. Schechter
et al. [53] classified passwords as weak by counting the number
of times a certain password is present in the password database.
Bonneau [8] proposed α-guesswork as a proper metric for esti-
mating the guessing entropy of a fraction α of accounts. Kelley
et al. [40] proposed a guess-number calculator to determine if and
when a given password-guessing algorithm, would guess a specific
password. Dell’Amico and Filippone [18] proposed a method to
estimate the number of guesses required to find a password.

Many of the password strength meters in the current literature
are based on the aforementioned password guessing approaches:
using neural networks by Melicher et al. [46] and Ur et al. [59], us-
ing PCFGs by Houshmand and Aggarwal [34] and Wang et al. [65],
and using Markov models by Castelluccia et al. [13]. Furthermore,
there is a meter using a set of advanced heuristics by Wheeler [70],
the official NIST entropy estimation [11], and others [22, 32, 61].
We provided a description of the meters in Section 6.3. Ur et al. [61]
found that strength meters, depending on the visual feedback, led
users to create longer passwords or caused them to place less im-
portance on satisfying the meter. Egelman et al. [22] studied the
impact of password strength meters on the password selection pro-
cess and found that meters result in stronger passwords when users
are forced to change existing passwords on “important” accounts.
de Carné de Carnavalet and Mannan [16] conducted an analysis
of deployed strength meters in 2014. They found evidence that the
commonly used meters are highly inconsistent and fail to provide
coherent feedback.

3 PASSWORD STRENGTH METERS
In this section, we discuss password strength meters and how to
measure their accuracy.

3.1 Approximating Strength
“Weak” passwords such as passw0rd or abc123 are not insecure
per se (e. g., based on some “magical” property they fulfill). They
are insecure as they are chosen commonly by humans, and thus

an adversary trying to guess passwords will guess those common
passwords early in an attack. (Similar observations have been made
recently by Wang et al. [65].)

An ideal strength meter, thus, assigns each password its likeli-
hood, e. g., approximated by the relative frequency from a large
enough password corpus. However, this straightforward idea is
hard to use in practice: The relative frequencies can in principle be
accurately approximated for “relatively likely” passwords (cf. [8]),
e. g., those that are particularly relevant for online guessing attacks.
Estimating frequencies for less likely passwords, relevant for offline
guessing attacks, is next to impossible due to the amount of data
required. Therefore, practical strength meters should aim at approx-
imating the true strength using compactly representable functions.
The traditional LUDS meter allows for a very compact represen-
tation (of a few bytes), at the cost of limited accuracy [68], while
other approaches based on Markov models [13] or PCFGs [65, 69]
have been demonstrated to be more accurate, at the expense of
increased storage size.

For the remainder of this work we assume a PSM is a mech-
anism f that takes as input a password, i. e., a string of charac-
ters Σn over an alphabet Σ, and outputs a score or strength value:
f : Σ∗ → R. We assume the score being a real-valued number.
Some meters aim at providing an estimate for the probability of a
password (e. g., [13, 34, 65]), i. e., values are in the interval [0, 1];
Others aim at estimating the guess number (e. g., [46, 59, 70]), i. e.,
are integer-valued; Most meters deployed at websites output a tex-
tual description of the password strength, e. g., [Too short, Weak,
Fair, Good, Strong] for Google’s PSM, in this case we convert
these textual descriptions to natural numbers between 1 and the
number of classes.

PSMs can be either informative when they are used merely to in-
form the user about the strength of the password (nudging the user
towards more secure choices), or enforcing when passwords that
are considered weak are not accepted by the system. Most deployed
systems we analyzed, fall actually in the middle, enforcing a certain
minimal strength, and informing (and nudging) the user towards
more secure passwords beyond those minimal requirements.

3.2 Measuring Accuracy
Accuracy is one of the central factors of PSMs, and several PSMs
have been proposed over the past few years. However, little work
was done towards a fair comparison of different meters, and even
on the question what constitutes a fair comparison, there is no
agreement.

The preferred method to measure the accuracy of a strength me-
ter is by comparing it to an ideal reference, measuring the similarity
between the reference and the meter output. This idea is based
on the intuition that weak passwords are those that are common
and have been used before [13, 65, 70]. However, the techniques
for comparing reference and tested meters in previous work were
ad-hoc and ranged from measures counting overestimation errors
to rank correlation metrics. In the following, we will systematically
study which measures are most suited for performing this com-
parison. Specifically, we will show that previously used similarity
measures have significant shortcomings limiting their validity and
usefulness.

Before discussing specific similarity measures, it is instructive to
consider properties that these measures should fulfill. To this goal,
we specify which differences the meter and the reference should
yield high and low similarity. There is no absolute truth in which
requirements are desirable or not, and for specific applications,
there may be additional requirements that are desired. We provide
a list of requirements based on extensive experience with passwords
and PSMs, and believe it captures requirements suitable for common
online use.

By explicitly stating the desired requirements the selection pro-
cess becomes much more transparent, and we will see that most
previously used similarity measures fail even to fulfill some funda-
mental requirements, highlighting the importance of a systematic
treatment. (Specific test cases derived from these abstract require-
ments are provided in the following section.)

(1) Tolerance to Monotonic Transformations: The output score
given by strength meters is often not directly comparable. Their
score can be based on the number of guessing attempts, different
forms of entropy, on arbitrary scales like [Weak, Fair, Strong]
vs. [Terrible, Weak, Good, Excellent, Fantastic], and other
home-brewed measures of strength. Assuming that the underlying
sorting of passwords is identical, these differences can be modeled
as monotone functions. A good similarity measure should tolerate
such monotone transformation and assign high similarity to such
transformed strength estimations.

(2) Tolerance to Quantization: A particular case of monotone
transformations is quantization, e. g., strength meters that divide
the reported values into a small number of bins, often three to five.
A good similarity measure should tolerate such quantization. Note,
with a very low number of bins, e. g., 2 bins [reject, accept],
the comparison becomes less meaningful, and scores will typically
be low, even for otherwise reasonable measures. In the case of an
enforcing PSM, the strength policy becomes particularly interesting.
In this case, all passwords that are not accepted effectively end up
in the lowest bin (commonly called “Too short,” “Too easily guessed,”
or “Too weak”). The stricter the policy is set, the larger this lowest
bin gets, reducing the overall precision. A good similarity measure
should tolerate moderately large reject-bins.

(3) Tolerance to Noise: Small deviations in the strength estima-
tions are frequent, based on slight differences in the used models,
the training data, or other factors. A good measure should tolerate
such minor deviations.

(4) Sensitivity to Large Errors:While small differences don’t have
a significant effect on the usefulness of a strength meter, large
deviations, in particular, overestimates, can harm. A good measure
needs to be sensitive to large variations in strength even for a small
set of passwords.

(5) Approximation Precision: A similarity score is easier to com-
pute and thus more useful if it doesn’t need full knowledge of the
meter. Specifically, strength meters deployed on websites put limits
on the number of samples one can handle, either by the slowness of
the process or more specific restrictions, like the number of allowed
queries. Thus, a good measure should be easy to approximate from
a limited number of samples.

Table 1: Evaluated Datasets

Name Year Service Policy1 H̃∞ G̃0.25

RockYou 2009 Social Games 5+ 6.81 15.89

LinkedIn 2012 Social Network 6+ 7.27 19.08

000Webhost 2016 Web Hosting 6+ [a-Z][0-9] 9.26 20.69

4 EVALUATED PASSWORD DATASETS
In this section, we discuss factors that influence password choice,
introduce the password datasets that we will use to evaluate a broad
selection of PSMs, and describe our reference password distribution
which we will use for comparing different accuracy metrics.

4.1 Influencing Factors
When evaluating strength meters one must consider that password
strength is contextual and influenced by many factors [4, 23, 50].

(1) Password leaks originating from a single web service follow a
distribution partially specific for this site. For example, the password
“linkedin” appears in the LinkedIn leak with a probability of 0.12 %,
but does not appear in the RockYou leak. In contrast, the password
“rockyou” appears with a probability of 0.06 % in the RockYou leak,
but only appears with a probability of 0.000028% in the LinkedIn
leak. Often passwords from a service reflect the category of the
service and include the name or semantic theme of the service [67].

(2) Website administrators often enforce password composition
policies [42] (e. g., requiring the password to contain a digit or
symbol or to be of a certain length) that force users into choosing
different passwords which are compliant with the respective policy.

(3) Florêncio et al. showed that not using any weak passwords
or not considering to reuse some passwords becomes impossible
with a growing number of accounts. If no password manager is
used, account grouping and reusing passwords becomes the only
viable solution [25]. Given a fixed time-effort budget [5] it is sub-
optimal to spend the same amount of effort for all accounts. Florên-
cio et al. [24] proposed to classify accounts into categories from
“don’t-care” to “ultra-sensitive” accounts based on, e. g., the conse-
quences of account compromise.

(4) A password strength meter might be tuned and more inten-
sively tested with a specific password leak. Specifically, academic
meter proposals, which are based on probabilistic password models,
require a lot of real-world password data. Some strength meters
even include small blacklists of very common passwords.

While it is difficult to avoid all factors, we try to minimize their
influence by testing three very different datasets in our experiments
that differ by service, policy, and leak date. We selected the datasets
to allow easy verification and generate reproducible results based on
publicly available data. Our findings are limited to predominantly
English speaking users and their password preference. To reason
about the strength of a password distribution considering a best-
case attacker, we provide the Min-entropy H∞ as lower bound
and partial guessing entropy (α-guesswork) Gα for alpha 0.25 as
described by Bonneau [8].

1We list the active policy, at the time when the data breach happened.

4.2 Datasets
An overview of the used datasets that are described in the following
is given in Table 1:

• RockYou: This is a well-established leak used extensively in
previous work. 32 million plaintext passwords leaked from the
RockYou web service in December 2009, via an SQL injection attack,
which means that no bias was introduced. We include RockYou in
our evaluation because of its popularity in the community. However,
its passwords should be considered relativelyweak (G̃0.25 = 16 bits).

• LinkedIn: The social networking website LinkedIn was hacked
in June 2012. The full leak became public in late 2016. The leak
contains a SQL database dump that includes approx. 163 million
unsalted SHA-1 hashes. In the following, we use a 98.68 % recov-
ered plaintext version resulting in approx. 161 million plaintext
passwords.We expect the bias introduced by ignoring 1.32 % of (pre-
sumably strong) passwords to be low, as we are mostly interested
in passwords whose probability can reasonably be approximated
by their count. We include LinkedIn in our evaluation because we
consider those passwords to be a reasonable candidate for medium-
strong passwords (G̃0.25 = 19 bits).

• 000Webhost: Leaked from a free web space provider for PHP
and MySQL applications. The data breach became public in October
2015. The leak contains 15 million plaintext passwords. Based on
the official statement, a hacker breached the server, by exploiting a
bug in an outdated PHP version, which again means that no bias
was introduced. We include 000Webhost in our evaluation because
of its enforcement of a lowercase and digits password composition
policy, which results in a different password distribution containing
relatively strong passwords (G̃0.25 = 21 bits).

To avoid processing errors in later steps (querying online meters),
we cleaned the leaks, by removing all passwords that were longer
than 256 characters or non-ASCII. This cleaning step removed
0.06 %, 0.09 %, and 0.19 % of the passwords from RockYou, LinkedIn,
and 000Webhost.

4.3 Reference
To reason about various candidate metrics that might be suitable
to measure the accuracy of a strength meter, we created a fourth
dataset. The dataset only contains the frequent passwords of the
LinkedIn leak. We have chosen LinkedIn because it was the largest
available leak at our disposal. As has been shown by Bonneau [8]
andWang et al. [65], approximating strength for unlikely passwords
is error-prone. To avoid such approximation errors, we limited the
LinkedIn file only to include ASCII passwords that occur 10 or more
times (count ≥ 10), which resulted in the reference password file
containing approx. 1 million unique passwords.

We use the dataset as a) ideal reference and as b) strength meter
output. For this, we divided the set into two disjoint sets REF-A and
REF-B of about equal size by random sampling. In the following
experiments, REF-A will be used as the reference, whereas REF-B
will be used as a basis for the test cases, thus, simulates the meter
output. The experiments as described in Section 5.2 operate on
the count values; if the password abc123 occurs 36, 482 times in
LinkedIn, then REF-A and REF-B include a count value of ∼18, 240
for this password. In Section 5.3 we report on the reliability of this

reference by performing additional tests that include uncommon
passwords, as well as, the other leaks (RockYou and 000Webhost).

5 SIMILARITY MEASURES
In this section, we describe the process of selecting a suitable simi-
larity metrics.

5.1 Test Cases
An overview of test cases described below is given in Table 2.

5.1.1 Monotonic Transformations. We prepared several cases to
test a measures’ tolerance to monotonic transformations: DOUBLE:
For this test case we double the count values in REF-B. This repre-
sents the case that two strength meters use a different scale (e. g.,
one sets the cutoff for the Strong class at a different threshold than
the other). This would naturally occur when two strength meters
use the expected time to crack a password (such as zxcvbn [70]) but
assume different speeds of the cracking hardware. HALF: For this
test case we half the values in REF-B before applying the measure
to calculate the similarity with the ideal strength meter. LOG: For
this test case we take the logarithm to base 2 of the count values
in REF-B. This occurs naturally when one strength meter reports
strength in “expected number of guesses,” and one in “bits of en-
tropy.” SQR/SQRT: Further, we added test cases by applying the
square operation and the square root to REF-B, respectively.

5.1.2 Quantization. A substantial fraction of online meters uses
binned output. Thus, such test cases are highly relevant in prac-
tice. Q4-equi/Q10-equi: For this test case we use quantization into
four/ten bins, about the same number of passwords per bin (count-
ingwithmultiplicities).Q4-alt/Q10-alt: Similar to the test case above,
we use quantization into four/ten bins, but in this case, splitting into
bins of equal size based on unique passwords (without counting
multiplicities).

5.1.3 Disturbances. We have a number of test cases testing the
tolerance and sensitivity to disturbances in the data. RAND: We
use random values drawn from a uniform distribution between
1 and the maximum count value. This test case can be seen as a
calibration of low similarities as any matching only happens by
chance. ADD-RAND: We add small random disturbances to REF-B
drawn according to a uniform distribution between 1 and the re-
spective count of a password. INV-WEAK-5:Wemodify the weakest
5 % of passwords (with multiplicities), by setting their usually very
large count to 0 (i. e., we invert their scoring to very strong). INV-
STRONG-5: We modify the strongest 5 % of passwords (with multi-
plicities), by setting their usually very small count to the maximum
count value (i. e., we invert their scoring to very weak).

5.2 Testing Different Metrics
Next, we describe a number of similarity measures and evaluate
them on the test cases defined above to understand their properties
and usefulness. The results are shown in Table 2, we will discuss
these results in-depth in the remainder of this section.

5.2.1 Correlation. A straightforward way to measure similarity,
which has been used in most prior work, is the correlation between
the reference and the observed values.

Pearson Correlation Coefficient: The probably best known cor-
relation measure. It is defined as the covariance divided by both
standard deviations. Pearson correlation has several problems as
a similarity measure for PSMs: First, it is sensitive to monotonic
transformations (e. g., correlation of REF-A and LOG is 0.13), which
is undesirable. Even worse, it is highly sensitive to quantization
(which we typically encounter for most web-based meters), the
correlation between REF-A and quantized versions Q4-equi/Q10-
equi/Q4-alt/Q10-alt is close to zero (between approximately 0.1
and 0.05). Another issue is that it does not capture well the case
INV-STRONG-5, where 5 % of strong passwords are given a weak
score (arguably not a big problem at all), yet the similarity drops
to around zero (−0.02). Two properties of Pearson correlation un-
derlay this undesirable behavior. First, it is a parametric measure
and computed from the given values (instead of, e. g., ranks such
as Spearman correlation), which makes it sensitive to non-linear
transformations of the data. Second, it gives each data point equal
weight, even though the weak passwords have a much higher count
(by definition), thus Pearson correlation weights deviations for
strong passwords stronger, relatively speaking.
Spearman Rank Correlation Coefficient: It is defined as Pear-
son correlation over the ranks of the data. Thus it is based on ranks
of the (sorted) data only. Spearman correlation has been used by
previous work on password strength [13, 65]. Spearman is robust
against monotonic transformations and quite tolerant to quantiza-
tion, which is an improvement over Pearson. Still, it gives too much
weight to strong passwords, similarly to Pearson correlation. One
additional problem is visible for Spearman: the correlation between
REF-A and REF-B should be (close to) 1, as we expect perfect corre-
lation, however, Table 2 shows a correlation of 0.73. The underlying
reason is again the missing weights, which leads to the situation
that the strong passwords dominate the similarity score (around
50 % of passwords have a count of less than 20 in REF-A), and the
(small) errors from sampling on those strong passwords pull the
score from 1 (what would be expected) to around 0.7.
Kendall Rank Correlation Coefficient: Kendall’s tau coefficient
is quite similar to Spearman correlation, but conceptually simpler
(it only takes into account if ranks are wrong and the direction,
but not how big the difference is). Previous work, in fact, showed
very similar results for Spearman and Kendall [65]. However, it
has the disadvantage that naïve implementations (as in standard R)
are computational expensive for larger samples requiring O(N 2)
operations. While Kendall is expected to be robust to monotonic
transformations, a problem similar to Spearman reduces correlation
to 0.56. Furthermore, adding randomness (ADD-RAND) introduces
enough variation to reduce the similarity to 0.54, and the impact of
quantization is stronger than for Spearman.

5.2.2 Weighted Correlation. One common problem with the above
correlation measures is that they treat frequent and infrequent
passwords as equally weighted data points, i. e., an error in a sin-
gle infrequent password is rated equally as an error in a frequent
password which influences much more accounts. Weighted correla-
tion measures give specific weights to the data points, which we
take to be the frequency in the reference dataset. (To the best of
our knowledge, neither weighted Pearson nor weighted Spearman
correlation has been used to compare PSMs before.)

Table 2: Comparing REF-A withmodified REF-B using various similarity measures.

(Weighted) Correlation Metrics (Weighted) Mean Error Metrics (Weighted) One-Sided/Pairwise Error Metrics
Test Cases Sim. Pear. Spear. Kend. wPear. wSpear. MAE MSE rMAE rMSE wrMAE wrMSE wrLAE wrLSE PE PE-5 PU wPE wPE-5 wPU

REF-B H 1.00 0.73 0.56 1.00 0.99 4 54 0.16 0.05 2.77 13 1.39 7 1.00 0.68 0.95 0.96 0.24 0.99

M
on

ot
on

ic
Tr
a. DOUBLE H 1.00 0.73 0.56 1.00 0.99 28 300402 0.16 0.05 2.77 13 1.39 7 1.00 0.68 0.95 0.96 0.24 0.99

HALF H 1.00 0.73 0.56 1.00 0.99 14 75703 0.16 0.05 2.77 13 1.39 7 1.00 0.68 0.95 0.96 0.24 0.99
LOG H 0.13 0.73 0.56 0.49 0.99 24 301526 0.16 0.05 2.77 13 1.39 7 1.00 0.68 0.95 0.96 0.24 0.99
SQR H 0.93 0.73 0.56 0.99 0.99 3.E+05 7.E+16 0.16 0.05 2.77 13 1.39 7 1.00 0.68 0.95 0.96 0.24 0.99

SQRT H 0.45 0.73 0.56 0.96 0.99 23 300014 0.16 0.05 2.77 13 1.39 7 1.00 0.68 0.95 0.96 0.24 0.99

Q
ua
nt
iz
at
io
n Q4-alt H 0.05 0.89 0.78 0.08 0.73 25 301711 0.10 0.02 5.41 18803 4.34 18799 1.00 0.69 0.75 1.00 0.81 0.75

Q10-alt H 0.06 0.91 0.80 0.09 0.86 22 301465 0.09 0.01 2.79 3006 1.86 3003 1.00 0.54 0.90 1.00 0.20 0.90
Q4-equi H 0.12 0.72 0.61 0.21 0.97 26 301766 0.16 0.04 3.76 29 2.58 25 1.00 0.78 0.36 1.00 0.36 0.75

Q10-equi H 0.11 0.90 0.80 0.25 0.99 25 301607 0.09 0.02 1.83 6 0.96 3 1.00 0.57 0.71 1.00 0.19 0.90

D
is
tu
rb
an
ce
s RAND L 0.00 0.00 0.00 0.12 0.04 3.E+05 9.E+10 0.33 0.17 22.78 1.E+05 20.37 1.E+05 1.00 0.90 1.00 1.00 0.92 1.00

ADD-RAND H 0.99 0.70 0.54 1.00 0.99 15 29799 0.17 0.05 3.09 16 1.62 9 1.00 0.70 0.97 0.97 0.26 0.99
INV-WEAK-5 M 0.25 0.73 0.56 -0.04 0.70 6 283087 0.16 0.05 5.52 1.E+06 4.13 1.E+06 1.00 0.68 0.95 1.00 0.29 0.99
INV-STRO-5 M -0.02 -0.13 0.01 0.50 0.72 1.E+05 7.E+10 0.37 0.19 14.93 28742 12.89 28727 1.00 0.96 0.92 1.00 0.99 0.98

Sim.: Expected similarity with REF-A; L=Low similarity, M=Medium similarity, H=High similarity.

Weighted Pearson Correlation: Is defined as (normal) Pearson
correlation but weighting each data point with a weight vector,
where we use the reference (REF-A) as the weight vector. This
similarity measure exhibits similar problems as unweighted Pear-
son correlation for monotonic transformations, as expected, even
though the effect is less pronounced, and remains highly sensitive
to quantized data.
Weighted Spearman Correlation: Is defined as weighted Pear-
son correlation on the ranks. It is the most promising similarity
measure considered so far. As ordinary (unweighted) Spearman
correlation, it handles monotonic transformations well. It gives a
correlation close to 1 to the test case REF-B (and the other mono-
tone transformations including most quantized test cases, which
was problematic before), as now the weights prevent the over-
representation of strong passwords. It also handles the INV-WEAK-
5 and INV-STRONG-5 cases well, where it assigns roughly the same
correlation to both cases of around 0.7, a moderate but noticeable
lower value than 1.

5.2.3 Mean Error. Another set of similarity measures is mean
square error (MSE) and related concepts. We tested variations, in-
spired by the above results and techniques used in previous work.
Mean Absolute Error (MAE): Is defined as the average absolute
error, with equal weight for each data point. A similar measure was
used recently [70], where a logarithmic error was used. Our test
cases reveal the following problems: It is highly sensitive to mono-
tonic transformations, even linear ones (and previous work [70]
needed to adapt the scales of the meters to get a reasonable compar-
ison). Large deviations in the rating for single passwords only have
moderate impact on the similarity (due to taking absolute errors
only). Its sensitivity to deviations in frequent passwords is low (the
error for INV-WEAK-5 is 6, only marginally larger than the error
due to random sampling (REF-B with an error of 4).
Mean Squared Error (MSE): Is defined as the average over the
squared error, giving more weight to large deviations. Properties
of MSE are very similar to that of MAE.
Ranked Mean Absolute/Squared Error (rMAE/rMSE): Here
we first rank the data (assigning ties the average rank), and com-
pute the MAE or MSE of the ranks. As expected, the resulting
measures are resistant to monotonic transformations. However, as
they are non-weighted, they fail to capture errors for few frequent

passwords (INV-WEAK-5). This means, in the bad performing PSM
test case (INV-WEAK-5) both, rMAE and rMSE fail to show any
difference to the reference making them unsuitable.

5.2.4 Weighted Mean Error. All error measures discussed in the
previous subsection are unweighted, and thus fail to capture errors
in few frequent passwords. In this subsection, we consider weighted
variants.
Weighted andRankedMeanAbs./Sq. Error (wrMAE/wrMSE):
When we use both ranked and weighted data points, the resulting
similarity measure becomes more discriminative, e. g., it allows to
distinguish the INV-WEAK-5 and DOUBLE test cases. Both mea-
sures work very well on our test-cases (remember that lower values
mean more similarity) and seem to be a reasonable choice.

5.2.5 One-Sided Errors. As described before, password strength ap-
proximations can be under- or overestimates. Previous work [46, 70]
observed that a meter underestimating the security of strong pass-
words (e. g., INV-STRO-5) is less problematic than overestimating
the strength of weak passwords (e. g., INV-WEAK-5). The former
results in a user simply selecting another (presumably secure) pass-
word, whereas in the latter case the user believes having selected a
secure password, where in reality it is weak.
Weighted and Ranked Mean Abs./Squared One-Sided Lower
Error (wrLAE/wrLSE): One can define versions for MAE/MSE
that only take one-sided errors into account. If this measure oper-
ates on count values, this approach favors meters that generally
underestimate security: a meter that rates all passwords insecure
(i. e., a high count value) will get a high rating. This can be prevented
by operating on ranked data. On the tested datasets and test cases
the resulting measures, wrLAE/wrLSE perform similarly to their
two-sided versions wrMAE/wrMSE. A likely explanation is that
wrLAE/wrLSE operate on ranked data. Therefore, overestimating
the strength of one password generally leads to underestimating
the strength of another password. (Weights and squaring differ-
ences (wrLSE) mean that the results still can differ, however, these
effects seem to even out on the dataset that we considered.) For
applications that call for one-sided metrics, one should consider
non-ranked similarity metrics at the cost of losing the ability to
tolerate monotonic transformations.

5.2.6 Pairwise Errors. In preliminary tests, we observed that sev-
eral similarity measures give a low similarity score to quantized
data. This behavior is undesirable, as heavy quantization loses in-
formation about the distribution.

We tried to address this problem by designing a similarity score
that is based on two individual metrics: an error metric which de-
scribes how many passwords are not in the “correct” order, and a
utility metric which describes if the meter provides “useful” and dis-
criminative output. (To illustrate this problem, consider a strength
meter with binary output, where only a few very strong passwords
are “accepted,” and the other passwords are “rejected”. This meter
would have a low error rating, as it mostly preserves the order, but
a low utility rating, as most passwords are in the same bin). This
mechanism is based on the rank. We evaluated several variants of
this basic idea.
Pairwise Error/Utility Rate (PE/PU): These consider the relative
ranking of all pairs of passwords. PE considers the fraction of pairs
where the meter and the reference disagree (where a tie in one of
the two is not counted as a disagreement), whereas the PU considers
the fraction of pairs where the meter sees a tie. (A meter outputting
the same strength for all passwords, i. e., uses a single bin, has a PE
of 0, but also a PU of 0.)
Pairwise Error Rate More Than 5% (PE-5): As small deviations
are typically considered a non-problem, for this variant we tolerate
any deviation that is less than 5 % (in terms of rank) and do not
count them towards the error.

5.2.7 Weighted Pairwise Errors. We have argued before that un-
weighted measures not taking into account the specific probabilities
of passwords systematically bias results.
Weighted Pairwise Error/Utility Rate (wPE/wPU)/Weighted
Pairwise Error Rate More Than 5% (wPE-5): We use weighted
versions of the three measures introduced before, where we weight
each pair with the product of the probabilities of the two passwords.

Implementation: All measures are implemented using R v3.4.4
(March 2018). For Pearson and Spearman, we use standard R. For
weighted Pearson and Spearman we use the wCorr package2. For
calculating the Kendall correlation, we use a O(n logn) optimized
version from pcaPP3.

5.3 Reference Validation
To confirm our findings and test the reliability of our reference,
which is based on the common LinkedIn passwords, we repeated
our analysis using RockYou and 000Webhost. The leaks are different
in size; thus the resulting number of passwords tested were different.
While the reference had approx. 1 million passwords that occurred
10 or more times, RockYou only includes 250 000 and 000Webhost
62 000 unique passwords. Across different leaks we observed only
minor differences. The tendencies for correlation, mean error, one-
sided error, and pairwise error metrics, which can be observed in
Table 2, remain the same independent of the tested password leak.

2Package: wCorr (Weighted Correlations), Version 1.9.1, May 2017,
https://cran.r-project.org/package=wCorr, as of November 6, 2018
3Package: pcaPP (Robust PCA by PP), Version 1.9-73, January 2018,
https://cran.r-project.org/package=pcaPP, as of November 6, 2018

For example, for the three leaks the wSpear. metric results vary
only around ±0.04 across all test cases.

Furthermore, we repeated our tests with a LinkedIn set that in-
cluded uncommon passwords (count ≥ 2). Including uncommon
passwords is expected to be more error prone [8, 65]. While the
common variant included approx. 1 million passwords, the uncom-
mon version consisted of 31 million unique passwords. However,
our results show that the tendencies from Table 2 remain the same.
For example, for the uncommon variant the wSpear. metric results
vary around ±0.07 across all test cases.

To summarize, in those additional tests we found only minor
differences in the behavior of the similarity measures across pass-
word leaks. Moreover, including uncommon passwords had a bigger
albeit overall negligible impact on the results.

5.4 Recommendation
We report results for 19 candidates for similarity measure. We con-
sidered 5 correlation-based similarity measures, 6-variants that are
mean absolute/square error-based, as well as, 8 one-sided/pairwise
error metrics and evaluated them on a number of test cases. Those
tests included commonly observed cases like logarithmic transfor-
mation and quantization, but also meters that incorrectly judge
strength simulated via disturbances.

We have seen that measures that are not weighted largely fail
to capture essential aspects of the (highly skewed) distributions of
passwords. Consequently, sensible measures should be weighted.
Furthermore, we observed that measures based not on rank (but
rather on values) are generally too sensitive to monotonic transfor-
mations and quantization to be useful.

In our evaluation the metrics wSpear., wrMAE, wrMSE, wrLAE,
wrLSE, and wPE-5/wPU are weighted and ranked metrics that
performed well and seem suitable as comparison metric. For the
remainder of this work we have selected weighted Spearman cor-
relation. It is not perfect, especially on quantized output, and it
does not differentiate between under- and overestimating strength,
but performed well on most test cases. Furthermore, it is a stan-
dard metric and easy to interpret, relatively good to approximate
from sampled data (cf. Section 5.5), and implementations are easily
available. Also, (unweighted) Spearman correlation has been used
before to evaluate strength meters [13, 65].

5.5 Sampling
Collecting data from online sources is often cumbersome (e. g.,
previous work [16] that evaluated data from (online) password
strength meter went through great effort to collect large amounts
of data). Therefore, we want to determine confidence intervals
for our measures to select the amount of data we need to collect.
Determining accurate bounds is non-trivial, and to the best of
our knowledge, no bounds are known that are applicable to our
problem.

We determine empirical confidence intervals for the weighted
Spearmanmeasure (as it was themost promising one in the previous
section) by repeated sub-sampling from the reference REF-A and
the test cases. We sample subsets of varying sizes, ranging from
100 to 10,000, and computing similarity on those subsets, using the
full data available to determine the strength score of the reference.

https://cran.r-project.org/package=wCorr
https://cran.r-project.org/package=pcaPP

Table 3: (Empirical) confidence intervals for REF-A vs. Q4-equi/LOG for different sample sizes and the weighted Spearman
similarity measure. All are determined using 10,000 iterations, and a 5% confidence level. Given is the width of the confidence
interval, as well as the boundaries (in brackets).

Samples 100 500 1000 5,000 10,000
Q4-equi 0.146 [0.852 , 0.998] 0.069 [0.916 , 0.985] 0.044 [0.928 , 0.972] 0.022 [0.944 , 0.966] 0.027 [0.940 , 0.966]
LOG 0.081 [0.919 , 1.000] 0.033 [0.966 , 0.999] 0.024 [0.974 , 0.998] 0.013 [0.983 , 0.996] 0.011 [0.985 , 0.997]

0.985 0.990 0.995

Weighted Spearman Correlation

0

200

400

600

800

1000

F
re

q
u

e
n

c
y

Figure 1: Histogram example for the monotonic transfor-
mation error LOG using weighted Spearman correlation,
10,000 samples, and 10,000 iterations.

We repeat this process 10,000 times and determine the interval
that contains 95 % of all similarity values (with 2.5 % larger and
2.5 % smaller). We report both the width of the interval and the
actual interval. We perform this process for two different datasets,
namely for Q4-equi and for LOG. While this does not give a formal
guarantee that the actual value can be found in this interval, it gives
us reasonable confidence and determines rough boundaries. Note
that this process only takes into account (random) errors caused by
sampling; it does not take into account any systematic errors that
may be introduced, e. g., by the smaller sample size. The summary
of results is shown in Table 3.

An example of a histogram of the correlation values is given in
Figure 1, which was determined for weighted Spearman correlation
with 10,000 samples and 10,000 iterations. The histogram has a me-
dian of 0.990, min./max. of 0.980/1.000, and 2.5 %/97.5 %-percentiles
of 0.985/0.997, resulting in a width of the 95 % confidence interval of
0.011. We see that, as expected, the width of the confidence interval
decreases with increasing sample size. For weighted Spearman, we
find widths of 0.027 and 0.011, respectively, and we will assume
differences greater than 0.05 to be significant.

6 EVALUATION
Guided by practical requirements, we distinguish between two
different application scenarios.

(1) PSMs deployed to protect online accounts, i. e., the most
prevalent online logins for social networks, email providers, etc. For
online accounts, the operator can and should implement measures

to limit the effectiveness of online guessing attacks such as rate-
limiting. Typically one considers between 100 and 1000 allowed
guesses within 30 days [9, 28, 31, 65, 66].

(2) Strength meters deployed to protect local authentication,
such as hard disk encryption. In this scenario the number of guesses
the adversary can test is only limited by the computational power
of the adversary; In real-world attacks, the number of guesses per
day on a single GPU is in the order of 109 to 1012 guesses [30]; some
even consider up to 1014 guesses to be reasonable [26].

6.1 Online Guessing
For online account PSMs, techniques such as rate-limiting can re-
duce the risk of online guessing attacks. Based on previous work [65,
66], which describes 1000 guesses as a reasonable limit an attacker
can perform in an online guessing attack, and based on the as-
sumption that the attacker is acting rational and guesses the most
likely passwords first, we deduce that the most interesting set of
passwords relevant for this kind of attack is the most likely 10,000
passwords. If each user omits passwords from the “easier half” of
this set, then overall security will greatly be improved.

Sampling strength meter scores for these 10,000 passwords of
all three datasets (RockYou, LinkedIn, 000Webhost) would put an
unnecessary burden on the server infrastructure, and might even
trigger server-side alerts. Given the results on sampling accuracy
in Section 5.5 we try to avoid such implications by restricting our-
selves to 1000 samples from these online services: i. e., out of the
10,000 most common RockYou passwords, we uniformly random
sample 1000 passwords. We repeat this process for LinkedIn and
000Webhost, respectively, to obtain three different online guessing
datasets. For the most likely passwords, we have very accurate
frequency estimates. So for those common passwords, we can use
the sample frequency as a ground truth for their strength in an
online attack.

6.2 Offline Guessing
For offline guessing attacks, there is no limit on the number of
attempts an attacker can perform, depending on the computing
capabilities and the password hashing function deployed for storing
the password. Consequently, the sample frequency in the datasets
does not provide useful information about the strength in an of-
fline attack, as the number of guesses (by far) exceeds the size of
the dataset. Instead, we use the performance of common guess-
ing tools as the reference. More specifically, we use the results
of the Password Guessability Service (PGS) [62], which allows re-
searchers to send lists of passwords (in plaintext), and the service
evaluates when these passwords will be guessed by common con-
figurations of widely used password guessing tools. Work by Ur
et al. [62] found that the attribute min_auto is a good measure

of resistance to guessing attacks, even with humans password ex-
perts involved. We use this recommended configuration without a
password composition policy (1class1) as the ground truth for the
offline guessing evaluation. For each of the three datasets (RockYou,
LinkedIn, 000Webhost) we sampled 10,000 passwords to obtain the
three different offline guessing datasets.

6.3 Selected Meters
Academic Proposals. We considered different meter proposals

from the literature.
• Heuristic/NIST : In 2004 the NIST published SP 800-63 Ver.

1.0 [11], which includes heuristics based on length and compliance
to a composition policy on entropy estimation. The heuristic also
considers a bonus if the password passes a common dictionary
check. The latest version, SP 800-63B [31] from June 2017, no longer
includes the ad-hoc heuristic.

• Markov Model/OMEN : In 2012 Castelluccia et al. [13] proposed
to train n-gramMarkov models on the passwords of a service to pro-
vided accurate strength estimations. The estimation is thus based
on the probabilities of the n-grams a password is composed of. The
meter provides adaptive estimations based on a target distribution
but is limited to server-side implementations.

• Heuristic/Comp8: In 2012 Ur et al. [61] investigated how PSMs
can be used to nudge users towards stronger passwords. They
outlined a scoring algorithm derived from a composition policy
called “Comprehensive 8.” Due to the lack of better alternatives, this
scoring function was used to estimate the strength of a password.
While this LUDS-based approach should no longer be used, we
include it for completeness.

• Heuristics/zxcvbn: In 2012 Daniel Wheeler proposed a PSM in
a Dropbox Inc. blog post. It is based on advanced heuristics that
extend the LUDS approach by including dictionaries, considering
leetspeak transformations, keyboard walks, and more. Due to its
easy to integrate design, it is deployed on many websites. The meter
was recently backed up by scientific analysis [70].

• PCFG/fuzzyPSM: In 2012 Houshmand and Aggarwal [34] pro-
posed a system to analyze the strength of a password. For this, they
used a PCFG-based approach. In 2016 Wang et al. [65] extended the
concept by proposing a fuzzy PCFG to model password strength,
based on which mangling rules are required to modify a basic dic-
tionary to match a training distribution of stronger passwords.

• Heuristic/Eleven: In 2013 Egelman et al. [22] studied password
selection in the presence of PSMs. For their meter, they decided
to use a similar metric for strength as NIST. Similar to LUDS ap-
proaches the meter considers character set sizes and length.

• RNN/DD-PSM: In 2016 Melicher et al. [46] proposed to use a
recurrent neural network for probabilistic password modeling. For
our analysis, we use the guess number estimations provided by the
RNN. The authors also describe a method that allows a client-side
implementation using a special encoding and a Bloom filter. In 2017,
Ur et al. [59] extended the concept by adding data-driven feedback
using 21 heuristics that try to explain how to improve the password
choice. We use Ur’s website4 for additional measurements.

• Heuristic/LPSE: In 2018 Guo et al. [32] proposed a lightweight
client-side meter. It is based on cosine-length and password-edit

4Data-Driven PSM: https://cups.cs.cmu.edu/meter/, as of November 6, 2018

distance similarity. It transforms a password into a LUDS vector
and compares it to a standardized strong-password vector using the
aforementioned similarity measures.

Password Managers. We also tested meters that protect high
value encrypted password vaults. If no further protection mecha-
nism is deployed [27], especially the security of cloud-based pass-
word managers depend on the use of a high entropy secret. Thus,
service providers need to give accurate strength estimates. Further-
more, vaults that offer the ability to store user-chosen credentials
might show strength estimates for their stored secrets, too. For our
work, we analyzed the PSMs of 11 popular password managers,
including 1Password [2], Bitwarden [1], Dashlane [14], Enpass [55],
KeePass [51], Keeper [39], LastPass [43], and more.

Popular Websites. We queried password strength meters from
popular web services within the top 100 ranking published by Alexa
Internet. Our samples include large sites like Apple, Baidu, Drop-
box, Facebook, Google, Microsoft, reddit, Twitter, Sina Weibo, Yandex,
and more. For better comparability, we tried to include sites that
were queried in previous work by de Carné de Carnavalet and
Mannan [16]. The authors published their findings on all the meter
codes via a “Password Multi-Checker Tool” on a self-hosted web-
site [17], allowing one to compare their results with the currently
implemented versions.

Operating Systems. We analyzed password strength meters from
standard operating systems. Microsoft’s Windows and Apple’s
macOS do not provide a strength estimation during account cre-
ation. However, Apple includes a Password Assistant with a strength
estimation functionally that is used by the Keychain Access applica-
tion while generating passwords, e. g., for file encryption. Canoni-
cal’s Ubuntu distribution shows a PSM during the account creation
and hard disk encryption setup. It is part of the graphical live CD
installer Ubiquity and based on Mozilla’s Seamonkey PSM function.

6.4 Querying Meters
To query the website PSMs, we used similar techniques as previ-
ous work [16]. For JavaScript and server-side implementations, we
used the Selenium framework [35] to automate a headless Google
Chrome browser. As all JavaScript (that involves no server com-
munication) is evaluated on the client only, one can obtain large
quantities of strength estimates in a short period. The used browser
automation approach allows to execute JavaScript, thus intermedi-
ate results that are not displayed in the GUI of the meter, but exist
in the Document Object Model (DOM), are accessible, too.

For the academic proposals, a more evolved approach was re-
quired, as some meters require a training or no implementation
was available. For the training, we sampled 10 million passwords
from each sanitized dataset (excluding the respective offline and
online passwords). Please note, not all meters make full use of all
available training data, e. g., fuzzyPSM, OMEN, and the RNN-based
approach have specific requirements. For example, the Markov
model approach used by OMEN does not allow training passwords
shorter than the n-gram size. Similarly, fuzzyPSM does not require a
training corpus larger than 1 million passwords. For the RNN-based
approach we were forced to limit the training set to passwords no
longer than 30 characters.

https://cups.cs.cmu.edu/meter/

Table 4: We computed the weighted Spearman correlation as the best similarity score (cf. Section 5). The table lists the online
use case on the left, the offline use case on the right. We highlighted if and on how many bins a meter quantized its output
and list whether a meter runs on client- or server-side.

Online Attacker Offline Attacker
ID Meter Type Quant. RockYou LinkedIn 000Webhost RockYou LinkedIn 000Webhost

1A Comprehensive8 [61] C - -0.652 -0.589 0.251 -0.476 -0.616 0.441
2 Eleven [22] C - 0.670 0.912 0.492 0.755 0.951 0.733
3 LPSE [32] C Q3 0.584 0.669 0.508 0.544 0.718 0.693
4C Markov (Multi) [27] S - 0.721 0.998 0.902 0.997 0.995 0.777
5B NIST (w. Dict.) [11] C - 0.669 0.910 0.472 0.756 0.953 0.816
6 PCFG (fuzzyPSM) [65] S - 1.000 0.994 0.963 0.998 0.999 0.899
7C RNN Target [46] C - 0.951 0.913 0.965 0.896 0.860 0.885
8A zxcvbn (Guess Number) [70] C - 0.989 0.990 0.554 0.989 0.999 0.868

Type: C=Client, S=Server; Quantization: Q3–Q6=Number of bins, e. g., Q5=[Terrible, Weak, Good, Excellent, Fantastic];

For Comp8, LPSE, and fuzzyPSM we contacted the authors that
kindly shared their source code or evaluated their implementation
and shared the results with us. For the RNN PSM, we used an im-
plementation by Melicher et al. [45]. We tested multiple variants:
i) Based on the guess numbers of a pre-trained (generic) password
distribution. ii) Based on a client-side JavaScript implementation
(using a different password composition policy) [58]. iii) Based on
the guess numbers of a self-trained RNN using a matching distribu-
tion (targeted), following the recommend construction guidelines.
iv) Based on a self-trained RNN using a matching distribution (tar-
geted) including a Bloom filter made of the top 2 million training
set passwords (following the recommendations in the original pa-
per [46]). For the Markov approach, we modified a version of the
Ordered Markov ENumerator (OMEN) [3] by Dürmuth et al. [21]
(a password guesser implementing the approach of Castelluccia et
al. [13]) and used the aforementioned training set to obtain strength
estimates. As this approach uses quantized (level-based) strength es-
timates only, we also implemented an approach described by Golla
et al. [27] that outputs probabilities instead of quantized scores
and increases precision by training one model per password length.
For zxcvbn, we used the official JavaScript implementation [20].
For NIST we used a JavaScript implementation of the meter [15].
We built a dictionary consisting of the top 100,000 passwords from
Mark Burnett’s 10 million password list [10], which has been used
as blacklist by previous work [33].

For most of the password managers (1Password, Bitwarden,
Keeper, etc.), we were able to query their respective web interface
version using Selenium. For RoboForm and True Key we automated
the respective Chrome extensions using Selenium. For KeePass, we
used the KPScript plugin on Windows [52]. For Dashlane we used
the Appium framework [38] and its Windows Driver to automate
the Windows desktop. While analyzing Enpass’s PSM we found
the use of the official zxcvbn implementation [54] (including the
same dictionaries), thus we didn’t query Enpass. Instead, we report
the zxcvbn results.

For the operating systems, we queried Ubuntu’s PSM using the
original Python script from the Ubiquity source code [12]. For
macOS we used PyObjC [49], a Python Objective-C bridge to query
Apple’s Security Foundation framework.

7 RESULTS
Next, we present and discuss the results of the evaluation of the
different meters, both for the online and offline use case. Some of
the academic PSM results are summarized in Table 4. We present
the results for the online use case on the left, and for the offline
use case on the right. We report results for both use cases for all
strength meters, even though some are designed for one specific use
case only (e. g., password meters deployed on websites are intended
for the online use case). We computed the weighted Spearman
correlation as the best similarity score selected in Section 5.

The full table for all 81 password strength meter variations can
be found in the Appendix A. The primary results are separated into
four categories (academic proposals, password managers, operating
systems, and websites). A fifth category is included for compari-
son and is based on the “Password Multi-Checker Tool” [17] by
previous work [16]. A version of our results that allows an easier
comparison, provides bar charts of the quantizations, and more can
be found online [29]. Please note, not all tested mechanisms like
ID: 5A/B NIST or ID: 33 Have I Been Pwned? are intended to be used
as a strength meter. Thus, the reported results for those estimators
cannot be directly compared with others as their parameters can
likely be augmented to perform better.

7.1 Overall Performance
The three best-performing academic meters are ID: 6 fuzzyPSM
(0.899 − 1.000), ID: 7C RNN Target (0.860 − 0.965), and ID: 4C
Markov (Multi) (0.721− 0.998) for both online and offline use cases.
A number of other PSM variants perform well, including ID: 8A
zxcvbn (Guess Number) (0.554 − 0.999).

For password managers we found ID: 13A KeePass and ID: 14B
Keeper to be accurately ranking meters (0.284 − 0.884). Further-
more, we found the zxcvbn-based ID: 17B RoboForm to be precise
(0.528 − 0.962). Across the binning PSMs we found some of the
zxcvbn (Score)-based meters, e. g., ID: 17A RoboForm (Q4), ID: 17C
RoboForm Business (Q6), ID: 18 True Key (Q5), and ID: 12 Enpass
(Q5) to be accurately ranking (0.341 − 0.827). The PSM in ID: 10A
Bitwarden shows significant problems. Similar, but less pronounced
are the inaccuracies of ID: 16B LogMeOnce and ID: 19A Zoho Vault.
All three are LUDS-based meters.

I II III IV V

M
in

G
u

es
s

N
u

m
b

er ≥ 1e10 3003 19 2

≥ 1e6 2141 0 0

0

≥ 1e8 1660 0 0 0 0

0

0 0

≥ 1e3 2650 0 0 0 0

≥ 1e0 525 0 0 0 0

Very Weak Weak Moderate Strong Very Strong

(a) ID: 13B (KeePass), wSpear: 0.002

I II III IV V

M
in

G
u

es
s

N
u

m
b

er ≥ 1e10 0 156 984

≥ 1e6 7 1328 665

1057

≥ 1e8 2 434 930 262 32

827

125 16

≥ 1e3 278 2093 220 56 3

≥ 1e0 482 43 0 0 0

0 1 2 3 4

(b) ID: 8B (zxcvbn, Score), wSpear: 0.567

I II III IV V

M
in

G
u

es
s

N
u

m
b

er ≥ 1e10 0 486 988

≥ 1e6 0 1095 863

189

≥ 1e8 0 549 782 282 47

1361

176 7

≥ 1e3 49 2021 542 31 7

≥ 1e0 329 184 12 0 0

Obvious Weak Good Strong Very Strong

(c) ID: 41B (Twitter), wSpear: 0.665

Figure 2: Number of passwords per bin: An accurate and correctly binning PSM produces a diagonal green line. A meter that
only assigns the weak/strong bin is visualized via a vertical bar on the left (purple)/right (red). The quantization degrades the
precision, if bin thresholds are incorrectly chosen (cf. Figure 2(a)), the relative ranking is lost and the correlation degrades.

When it comes to PSMs used by current operating systems, we
found very negative results. While macOS does not prominently
display their PSM, Ubuntu uses the PSM during account creation
and hard disk encryption. We found both meters to perform poorly.
An analysis of Ubuntu’s PSM source code revealed a LUDS meter.
Their approach counts the number of uppercase, digit, and symbol
characters and multiplies them with some magic constants. The
estimation function is a re-implementation of Mozilla’s Seamonkey
meter which dates back to 2006. First bug reports about the poor
quality and inconsistency in the assessment date back to 2012 [6].

While the weighted Spearman correlation decreases due to the ef-
fects of quantization (cf. Section 7.2), we observed a relatively good
accuracy for some of the website PSMs, too. For example the non-
binning ID: 35B Microsoft (v3), ID: 25A Best Buy, ID: 28A Drupal,
and ID: 41A Twitter PSMs (0.424− 0.951). Across the binning PSMs
we found some of the zxcvbn (Score)-basedmeters, e. g., ID: 36 reddit
(Q5) and ID: 40A Twitch (Q5) (0.197− 0.817) and some non-zxcvbn-
based PSMs like ID: 41B Twitter (Q5), ID: 32A Google (Q5), and
ID: 35A Microsoft (v3) (Q4) to be accurately ranking (0.487− 0.763).
Based on our measurements ID: 33 Have I Been Pwned? performs
excellently. This is likely owed to the fact that all tested datasets
are part of the Pwned Passwords list [36]. Thus, different results are
expected if non-breached passwords are evaluated. Surprising are
the results of ID: 27A Dropbox (0.056 − 0.611), the developers of
the zxcvbn meter. On their website, they rely on a Q4 score-based
implementation (they discard the first bin, i. e., all passwords with
a guess number below 103). Based on our ID: 8B zxcvbn (Score)
findings, we expected better results. Note that the results of ID: 27B
Dropbox using an older implementation by previous work [16]
results in similar low performance.

To summarize, the academic contribution to strength estimation
is outperforming many other meters and has brought up several
concepts that are improving the estimations. Some other factors
may contribute to those meters performing well: Specifically for
the academic proposals we often have continuous scores, and the
meters are trained on the distribution.

The PSMs in password managers perform reasonably well, with
a few exceptions (ID: 10A Bitwarden, ID: 16B LogMeOnce, and
ID: 19A Zoho Vault). Similar to previous work, we measured a
good accuracy for ID: 13A KeePass. The high accuracy of ID: 17B
RoboForm and others are explained by the use of zxcvbn. PSMs in
operating systems are not popular, even though, when present, they
are used for security-sensitive operations. Current implementations

are LUDS-based meters that lack any helpful guidance and should
be replaced. Website-based PSMs are doing reasonably well, with
correlations up to 0.951. Most of our evaluated website PSMs are
client-side JavaScript meters, also popular are hybrids. Server-side
implementations were rare in our evaluation set. We speculate there
are several reasons that websites are not using better meters: lack
of awareness, lack of guidance on the quality of meters, and the
usually larger size of academic meters that need to store the model
parameters.

7.2 Effect of Quantization
Almost all PSMs on websites provide a binned output, as users rely
on tangible feedback like Weak or Strong instead of a more abstract
probability or guess number. Binning will reduce the accuracy of
a meter. However, weighted Spearman is relatively robust against
this effect. In the following, we qualitatively analyze the estimates
of binning meters to provide a more intuitive way to compare
weighted Spearman correlation with the over- and underestimates
of the meters. For this, we use the PGS [62]min_auto guess number,
and a logarithmic binning similar to zxcvbn (Score). The results are
visualized in Figure 2.

7.2.1 The ≥ 103 | V Bin. This bin includes passwords that are weak
(103 ≤ guess number < 106) but misjudged by the meter to be strong.
An analysis of ID: 41B Twitter’s bin revealed weakness in detecting
keyboard walks and leet transformations. The password !QAZxsw2
(a keyboardwalk on US keyboards) as well as P@$$w0rd, jessica#1,
and password@123were incorrectly ranked. ID: 8B zxcvbn (Score)’s
bin includes misdosamores and mardelplata (film and city names),
as well as oportunidades (common Spanish term).

7.2.2 The ≥ 1010 | II Bin. This bin includes passwords that are
strong but misjudged by the meter to be somewhat weak. ID: 41B
Twitter’s bin revealed problems with digit-only passwords like
9371161366 that are usually cracked using a Mask attack. Fur-
thermore, it includes all lowercase phrases like itsababydog that
attackers crack by running a Combinator attack using two dictio-
naries. ID: 8B zxcvbn (Score)’s bin includes zxcvbvcxz (a variation
of the meter’s name giving keyboard walk) usually cracked via
a dictionary or Mask attack. Additionally, we found phrases like
atlantasports, which is likely cracked with a Combinator attack.

To further study the binning effect for real-world data, we look
at those meters that provide both, quantized and non-quantized
feedback. Interesting is the case of ID: 13B KeePass (Q5). While the

10
0

10
1

10
2

10
3

10
4

10
5

Password Count

10
-30

10
-20

10
-10

1

M
a
rk

o
v
 (

P
ro

b
a
b
ili

ty
)

(a) Markov

10
0

10
1

10
2

10
3

10
4

10
5

Password Count

10
-30

10
-20

10
-10

1

P
C

F
G

 (
P

ro
b
a
b
ili

ty
)

(b) PCFG

10
0

10
1

10
2

10
3

10
4

10
5

Password Count

10
0

10
10

10
20

R
N

N
 (

G
u
e
s
s
e
s
)

(c) RNN

10
0

10
1

10
2

10
3

10
4

10
5

Password Count

10
10

10
20

z
x
c
v
b
n
 (

G
u
e
s
s
e
s
)

(d) zxcvbn

Figure 3: PSM scatter plots: Increasing password counts on the x-axis. Strong (less common) passwords are on the left, Weak
(more common) passwords are on the right. Estimated strength values (measured as probability/guess number) on the y-axis.

strength estimates are relatively precise ID: 13A KeePass (0.393 −
0.884), the binning had severe consequences. The PSM enforces very
strong passwords (i. e., “Very weak” for score < 64 bit) resulting
in the majority of passwords falling in the weakest bin. (KeePass
does not display this textual feedback in their password manager
software). In comparison, we see that for ID: 9A 1Password (0.276−
0.807) the binning of the strength estimates by ID: 9B 1Password
(Q5) (0.276−0.813) had close to no effect on the accuracy. There are
cases where binning improves the score, e. g., the unbinned version
ID: 10A Bitwarden (−0.635 − 0.676) performs substantially worse
than the binned version ID: 10B Bitwarden (Q3) (0.258−0.725). The
reason is that binning can eliminate some types of errors of a meter,
depending on the precise binning boundaries.

7.3 Performance Over Time
It is interesting and illustrative to compare our results with those
from de Carné de Carnavalet and Mannan [16], which were col-
lected in June/July 2013. By analyzing the matching set of websites,
one can observe positive and negative developments in the past
5 years. First of all, ID: 26A vs. 26B (China Railway) as well as
ID: 31B vs. 31C (Fedex) did not change at all. Second, some meters
most notably ID: 23A vs. 23C (Apple), as well as ID: 27A vs. 27B
(Dropbox), and ID: 28B vs. 28C (Drupal) show a degraded rank-
ing accuracy. When analyzing the Apple hybrid PSM, we found
server-side blacklisting of the entire 14 million RockYou passwords
in combination with a basic LUDS approach that checks for sym-
bols and length. Finally, we can report a positive development for
ID: 32A vs. 32B (Google), ID: 42B vs. 42C (Yandex), and ID: 41B vs.
41C (Twitter). Note that Twitter changed its quantization over time;
thus results are not directly comparable. If we consider all websites
in our evaluation set, one observes slightly better performing PSMs
than in the complete set of 2013, but no significant change. One
can observe that the majority of websites did change their PSM
over time. (During our crawler development and data collection
we observed how reddit changed its meter from a simple LUDS
approach to zxcvbn.)

7.4 Recent Proposals and Future Directions
Recent academic proposals are among the best-scoring approaches.
Specifically, instances of Markov models, PCFGs, RNNs, as well as
zxcvbn, score excellently. Figure 3 shows the distribution of the
strength estimations for the LinkedIn offline dataset. On the x-axis,

one can see increasing password count numbers. This way, strong
(less common) passwords are on the left; weak (more common)
passwords are on the right.

While none of the approaches outperforms the others in terms
of accuracy, other factors become more critical. For example to
decrease the dependency of accuracy on the password distribution.
We chose the different password evaluation sets to show the varying
performance based on the (trained) distribution. A representative
example for this is ID: 7B RNN Generic (Web) (0.421 − 0.777) vs.
ID: 7C RNN Target (0.860 − 0.965). It shows the generic meter
performance (using a different composition policy) in comparison
to a targeted (distribution matching) trained variant.

Also relevant are the storage requirements of the meters: While
the inaccurate and straightforward LUDS meters can fit into a cou-
ple of bytes, the (uncompressed) n-gram databases of meters based
on Markov models can occupy hundreds of megabytes to gigabytes
of disk space. The current database underlying the Have I Been
Pwned? meter requires 30 GB (or enough trust to send partial pass-
word hashes to a third-party service). Optimized variants fit into
860 MB of memory using a Bloom filter [57]. zxcvbn has a size
of around 800 KB. Decreasing the size of meters while maintain-
ing high accuracy seems a worthwhile research goal. The RNN
approach by Melicher et al. [46] is a first good example that reason-
able accurate meters can fit into a couple of megabytes [46].

Furthermore, we need to better understand and mitigate the
negative effects of quantization. While the non-binned academic
proposals perform well, we need to find a way to transfer their
accuracy to quantized output that is required for users. In the set
of evaluated password strength meters we found score-based (i. e.,
> 42), percentage-based (i. e., > 75 %), and logarithmic (i. e., ≥ 106)
binning approaches, equal sized and unequal sized bins, magic
constants, and rule-based binning.

Finally, what we have learned from the success of zxcvbn (which
is implemented at several sites according to our findings) is that
providing implementations in multiple programming languages
that are readily deployable helps adoption.

7.5 Limitations
Albeit we carefully selected the datasets for our evaluation, we only
simulated real-world password choice using breached passwords.
As mentioned in Section 4 password distributions are influenced by
many factors, thus the three evaluated sets only reflect a small set

of passwords. In particular, they reflect mostly an English speaking
community. The impact of password-composition policies was not
studied, primarily, because constraining the passwords in each
leak to those that satisfy a given policy does not reflect real user
behavior [40].

While weighted Spearman correlation was the best in our set
of tested metrics for quantized strength estimations, it still is not
perfectly accurate. Thus, results for quantized meters need to be
interpreted carefully. In general, the lower the number of bins, the
less precise the results, as explained in Section 5. Furthermore, dif-
ferent application contexts may place different demands on meters,
thus may require different choices of similarity metrics.

Finally, measuring the accuracy alone is not enough to asses the
overall performance of a meter. Usability and deployability aspects
are vital for a complete assessment but are not presented in our
analysis.

8 CONCLUSIONS
In this work, we considered the accuracy of password strength
meters. We have demonstrated that the currently used measures
to determine the accuracy of strength meters (such as Pearson and
Kendall correlation) are not precise. We conducted a large com-
parison of different similarity measures and argued that weighted
Spearman correlation is best suited to precisely and robustly esti-
mate the accuracy of strength meters.

We applied this measure to 45 different strength meters and
determined their accuracy for an online and offline use case. We
found that the academic PSM proposals based on Markov models,
PCFGs, and RNNs perform best. We also found several websites
and password managers to have quite accurate strength meters.
However, the strength meters used in practice are less accurate
than academic proposals, and we see no significant improvement
of meter accuracy when comparing with meters from 5 years ago.

High accuracy is one important aspect that impacts the security
of a password strength meter. Also vital are usability and deploy-
ability aspects, those are independent of the presented work. We
hope our work aids further improvements of PSMs and provides
helpful guidance and a metric for the selection of accurate PSMs
and thus helps to improve the situation of password-based user
authentication.

REFERENCES
[1] 8bit Solutions, LLC. 2018. bitwarden (Web) – Free Open Source PasswordManager.

https://bitwarden.com, as of November 6, 2018.
[2] AgileBits, Inc. 2018. 1Password (Web) – Password Manager. https://1password.

com, as of November 6, 2018.
[3] Fabian Angelstorf and Franziska Juckel. 2017. OMEN v0.3.0 - C Implementation

of a Markov Model-based Password Guesser. https://github.com/RUB-SysSec/
OMEN, as of November 6, 2018.

[4] Daniel V. Bailey, Markus Dürmuth, and Christof Paar. 2014. Statistics on Password
Re-use and Adaptive Strength for Financial Accounts. In Security and Cryptogra-
phy for Networks (SCN ’14). Springer, Amalfi, Italy, 218–235.

[5] Adam Beautement, M. Angela Sasse, and Mike Wonham. 2008. The Compli-
ance Budget: Managing Security Behaviour in Organisations. In New Security
Paradigms Workshop (NSPW ’08). ACM, Lake Tahoe, California, USA, 47–58.

[6] Sebastian Benvenuti. 2012. Ubiquity – Ubuntu Should Encourage Stronger Pass-
words. https://bugs.launchpad.net/ubuntu/+source/ubiquity/+bug/1044868, as
of November 6, 2018.

[7] Matt Bishop and Daniel V. Klein. 1995. Improving System Security via Proactive
Password Checking. Computers & Security 14, 3 (1995), 233–249.

[8] Joseph Bonneau. 2012. The Science of Guessing: Analyzing an Anonymized
Corpus of 70 Million Passwords. In IEEE Symposium on Security and Privacy
(SP ’12). IEEE Computer Society, San Francisco, California, USA, 538–552.

[9] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. 2012.
The Quest to Replace Passwords: A Framework for Comparative Evaluation of
Web Authentication Schemes. In IEEE Symposium on Security and Privacy (SP ’12).
IEEE Computer Society, San Jose, California, USA, 553–567.

[10] Mark Burnett. 2015. Today I Am Releasing Ten Million Passwords. https://xato.
net/today-i-am-releasing-ten-million-passwords-b6278bbe7495, as of November
6, 2018.

[11] William E. Burr, Donna F. Dodson, and W. Timothy Polk. 2004. Electronic
Authentication Guideline: NIST SP 800-63 Ver. 1.0 (2004) to 800-63-2 (2013).
https://csrc.nist.gov/publications/detail/sp/800-63/ver-10/archive/2004-06-30, as
of November 6, 2018.

[12] Javier Carranza and Contributors. 2018. Ubiquity – Ubuntu Live CD Installer.
https://launchpad.net/ubuntu/+source/ubiquity, as of November 6, 2018.

[13] Claude Castelluccia, Markus Dürmuth, and Daniele Perito. 2012. Adaptive
Password-Strength Meters from Markov Models. In Symposium on Network and
Distributed System Security (NDSS ’12). The Internet Society, San Diego, California,
USA.

[14] Dashlane, Inc. 2018. Dashlane (Windows) – Password Manager. https://www.
dashlane.com, as of November 6, 2018.

[15] “dcopi”. 2013. NIST - Password Strength Meter Example. https://github.com/
dcopi/PWStrength, as of November 6, 2018.

[16] Xavier de Carné de Carnavalet and Mohammad Mannan. 2014. From Very Weak
to Very Strong: Analyzing Password-Strength Meters. In Symposium on Network
and Distributed System Security (NDSS ’14). ISOC, San Diego, California, USA.

[17] Xavier de Carné de Carnavalet and Mohammad Mannan. 2014. Password Multi-
Checker Tool. https://madiba.encs.concordia.ca/software/passwordchecker/, as
of November 6, 2018.

[18] Matteo Dell’Amico and Maurizio Filippone. 2015. Monte Carlo Strength Evalua-
tion: Fast and Reliable Password Checking. In ACM Conference on Computer and
Communications Security (CCS ’15). ACM, Denver, Colorado, USA, 158–169.

[19] Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier. 2010. Password Strength:
An Empirical Analysis. In Conference on Information Communications (INFO-
COM ’10). IEEE, San Diego, California, USA, 983–991.

[20] Dropbox, Inc. and Contributors. 2017. zxcvbn v4.4.2 – JavaScript Implementa-
tion of the zxcvbn Strength Meter. https://github.com/dropbox/zxcvbn, as of
November 6, 2018.

[21] Markus Dürmuth, Fabian Angelstorf, Claude Castelluccia, Daniele Perito, and
Abdelberi Chaabane. 2015. OMEN: Faster Password Guessing Using an Ordered
Markov Enumerator. In International Symposium on Engineering Secure Software
and Systems (ESSoS ’15). Springer, Milan, Italy, 119–132.

[22] Serge Egelman, Andreas Sotirakopoulos, Ildar Muslukhov, Konstantin Beznosov,
and Cormac Herley. 2013. Does My Password Go Up to Eleven?: The Impact of
Password Meters on Password Selection. In ACM Conference on Human Factors
in Computing Systems (CHI ’13). ACM, Paris, France, 2379–2388.

[23] Dinei Florencio and Cormac Herley. 2007. A Large-scale Study of Web Password
Habits. In Conference on World Wide Web (WWW ’07). ACM, Banff, Alberta,
Canada, 657–666.

[24] Dinei Florêncio, Cormac Herley, and Paul C. van Oorschot. 2014. An Admin-
istrator’s Guide to Internet Password Research. In Large Installation System
Administration Conference (LISA ’14). USENIX, Seattle, Washington, USA, 44–61.

[25] Dinei Florêncio, Cormac Herley, and Paul C. van Oorschot. 2014. Password
Portfolios and the Finite-Effort User: Sustainably Managing Large Numbers
of Accounts. In USENIX Security Symposium (SSYM ’14). USENIX, San Diego,
California, USA, 575–590.

[26] Dinei Florêncio, Cormac Herley, and Paul C. van Oorschot. 2016. Pushing on
String: The “Don’t Care” Region of Password Strength. Commun. ACM 59, 11
(Oct. 2016), 66–74.

[27] Maximilian Golla, Benedict Beuscher, andMarkus Dürmuth. 2016. On the Security
of Cracking-Resistant Password Vaults. In ACM Conference on Computer and
Communications Security (CCS ’16). ACM, Vienna, Austria, 1230–1241.

[28] Maximilian Golla, Theodor Schnitzler, and Markus Dürmuth. 2018. “Will Any
Password Do?” Exploring Rate-Limiting on the Web. InWho Are You?! Adventures
in Authentication Workshop (WAY ’18). USENIX, Baltimore, Maryland, USA.

[29] Maximilian Golla, Ibrahim Sertkaya, and Markus Dürmuth. 2018. Password
Strength Meter Comparison Website. https://password-meter-comparison.org,
as of November 6, 2018.

[30] Jeremi M. Gosney. 2017. Nvidia GTX 1080 Ti Hashcat Benchmarks. https:
//gist.github.com/epixoip/ace60d09981be09544fdd35005051505, as of November
6, 2018.

[31] Paul A. Grassi, James L. Fenton, and William E. Burr. 2017. Digital Identity
Guidelines – Authentication and Lifecycle Management: NIST SP 800-63B (2017).

[32] Yimin Guo and Zhenfeng Zhang. 2018. LPSE: Lightweight Password-Strength
Estimation for Password Meters. Computers & Security 73 (March 2018), 507–518.

[33] Hana Habib, Jessica Colnago,WilliamMelicher, Blase Ur, Sean Segreti, Lujo Bauer,
Nicolas Christin, and Lorrie Cranor. 2017. Password Creation in the Presence

https://bitwarden.com
https://1password.com
https://1password.com
https://github.com/RUB-SysSec/OMEN
https://github.com/RUB-SysSec/OMEN
https://bugs.launchpad.net/ubuntu/+source/ubiquity/+bug/1044868
https://xato.net/today-i-am-releasing-ten-million-passwords-b6278bbe7495
https://xato.net/today-i-am-releasing-ten-million-passwords-b6278bbe7495
https://csrc.nist.gov/publications/detail/sp/800-63/ver-10/archive/2004-06-30
https://launchpad.net/ubuntu/+source/ubiquity
https://www.dashlane.com
https://www.dashlane.com
https://github.com/dcopi/PWStrength
https://github.com/dcopi/PWStrength
https://madiba.encs.concordia.ca/software/passwordchecker/
https://github.com/dropbox/zxcvbn
https://password-meter-comparison.org
https://gist.github.com/epixoip/ace60d09981be09544fdd35005051505
https://gist.github.com/epixoip/ace60d09981be09544fdd35005051505

of Blacklists. In Workshop on Usable Security (USEC ’17). Internet Society, San
Diego, California, USA.

[34] Shiva Houshmand and Sudhir Aggarwal. 2012. Building Better Passwords Using
Probabilistic Techniques. In Annual Computer Security Applications Conference
(ACSAC ’12). ACM, Orlando, Florida, USA, 109–118.

[35] Jason Huggins and SeleniumHQ Contributors. 2017. Selenium - Web Browser
Automation. http://www.seleniumhq.org, as of November 6, 2018.

[36] Troy Hunt. 2018. 500m Pwned Passwords List. https://haveibeenpwned.com/
Passwords, as of November 6, 2018.

[37] Markus Jakobsson and Mayank Dhiman. 2012. The Benefits of Understanding
Passwords. In USENIX Workshop on Hot Topics in Security (HotSec ’12). USENIX,
Bellevue, Washington, USA.

[38] JS Foundation. 2018. Appium – Automation Made Awesome. http://appium.io,
as of November 6, 2018.

[39] Keeper Security, Inc. 2018. Keeper (Web) – Password Manager. https:
//keepersecurity.com, as of November 6, 2018.

[40] Patrick Kelley, Saranga Kom, Michelle L. Mazurek, Rich Shay, Tim Vidas, Lujo
Bauer, Nicolas Christin, Lorrie Faith Cranor, and Julio López. 2012. Guess Again
(and Again and Again): Measuring Password Strength by Simulating Password-
Cracking Algorithms. In IEEE Symposium on Security and Privacy (SP ’12). IEEE
Computer Society, San Jose, California, USA, 523–537.

[41] Daniel V. Klein. 1990. “Foiling the Cracker”: A Survey of, and Improvements to,
Password Security. In USENIX Security Workshop. USENIX, Berkeley, California,
USA, 5–14.

[42] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L. Mazurek,
Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Serge Egelman. 2011. Of
Passwords and People: Measuring the Effect of Password-Composition Policies.
In ACM Conference on Human Factors in Computing Systems (CHI ’11). ACM,
Vancouver, British Columbia, Canada, 2595–2604.

[43] LogMeIn, Inc. 2018. LastPass (Web) – Password Manager. https://www.lastpass.
com, as of November 6, 2018.

[44] Jerry Ma, Weining Yang, Min Luo, and Ninghui Li. 2014. A Study of Probabilistic
Password Models. In IEEE Symposium on Security and Privacy (SP ’14). IEEE, San
Jose, CA, USA, 689–704.

[45] William Melicher. 2017. Source Code – Cracking Passwords with Neural Net-
works. https://github.com/cupslab/neural_network_cracking, as of November 6,
2018.

[46] WilliamMelicher, Blase Ur, SeanM. Segreti, Saranga Komanduri, Lujo Bauer, Nico-
las Christin, and Lorrie Faith Cranor. 2016. Fast, Lean, and Accurate: Modeling
Password Guessability Using Neural Networks. In USENIX Security Symposium
(SSYM ’16). USENIX, Austin, Texas, USA, 175–191.

[47] Robert Morris and Ken Thompson. 1979. Password Security: A Case History.
Commun. ACM 22, 11 (1979), 594–597.

[48] Arvind Narayanan and Vitaly Shmatikov. 2005. Fast Dictionary Attacks on
Passwords Using Time-Space Tradeoff. In ACM Conference on Computer and
Communications Security (CCS ’05). ACM, Alexandria, VA, USA, 364–372.

[49] Ronald Oussoren. 2018. PyObjC – The Python Objective-C Bridge. https:
//pythonhosted.org/pyobjc/, as of November 6, 2018.

[50] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini, Hana Habib, Lujo Bauer,
Nicolas Christin, Lorrie Faith Cranor, Serge Egelman, and Alain Forget. 2017.
Let’s Go in for a Closer Look: Observing Passwords in Their Natural Habitat.
In ACM Conference on Computer and Communications Security (CCS ’17). ACM,
Dallas, Texas, USA, 295–310.

[51] Dominik Reichl. 2018. KeePass (Windows) – Password Manager. http://keepass.
info/help/kb/pw_quality_est.html, as of November 6, 2018.

[52] Dominik Reichl. 2018. KPScript (Windows) – Scripting KeePass. http://keepass.
info/help/v2_dev/scr_index.html, as of November 6, 2018.

[53] Stuart Schechter, Cormac Herley, and Michael Mitzenmacher. 2010. Popularity Is
Everything: A New Approach to Protecting Passwords from Statistical-Guessing

Attacks. In USENIX Workshop on Hot Topics in Security (HotSec ’10). USENIX,
Washington, District of Columbia, USA.

[54] Sinew Software Systems. 2016. Enpass Release Notes – Use of the zxcvbn Strength
Meter. https://www.enpass.io/release-notes/windowspc/, as of November 6,
2018.

[55] Sinew Software Systems. 2018. Enpass (Windows) – Password Manager. https:
//www.enpass.io, as of November 6, 2018.

[56] Eugene H. Spafford. 1992. Observing Reusable Password Choices. In USENIX
Security Symposium (SSYM ’92). USENIX, Berkeley, California, USA, 299–312.

[57] Richard Tilley. 2018. Blooming Password. https://www.bloomingpassword.fun,
as of November 6, 2018.

[58] Blase Ur. 2017. Source Code – Data-Driven Password Meter. https://github.com/
cupslab/password_meter, as of November 6, 2018.

[59] Blase Ur, Felicia Alfieri, Maung Aung, Lujo Bauer, Nicolas Christin, Jessica Col-
nago, Lorrie Faith Cranor, Henry Dixon, Pardis Emami Naeini, Hana Habib, Noah
Johnson, and William Melicher. 2017. Design and Evaluation of a Data-Driven
Password Meter. In ACM Conference on Human Factors in Computing Systems
(CHI ’17). ACM, Denver, Colorado, USA, 3775–3786.

[60] Blase Ur, Jonathan Bees, Sean M. Segreti, Lujo Bauer, Nicolas Christin, and
Lorrie Faith Cranor. 2016. Do Users’ Perceptions of Password Security Match
Reality?. In ACM Conference on Human Factors in Computing Systems (CHI ’16).
ACM, Santa Clara, California, USA, 3748–3760.

[61] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass,
Michelle L. Mazurek, Timothy Passaro, Richard Shay, Timothy Vidas, Lujo Bauer,
Nicolas Christin, and Lorrie Faith Cranor. 2012. How Does Your Password
Measure Up? The Effect of Strength Meters on Password Creation. In USENIX
Security Symposium (SSYM ’12). USENIX, Bellevue, Washington, USA, 65–80.

[62] Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor,
Saranga Komanduri, Darya Kurilova, Michelle L. Mazurek, William Melicher, and
Richard Shay. 2015. Measuring Real-World Accuracies and Biases in Modeling
Password Guessability. In USENIX Security Symposium (SSYM ’15). USENIX,
Washington, D.C., USA, 463–481.

[63] Ashlee Vance. 2010. If Your Password Is 123456, Just Make It HackMe. http:
//www.nytimes.com/2010/01/21/technology/21password.html, as of November 6,
2018.

[64] Rafael Veras, Christopher Collins, and Julie Thorpe. 2014. On the Semantic
Patterns of Passwords and their Security Impact. In Symposium on Network and
Distributed System Security (NDSS ’14). The Internet Society, San Diego, California,
USA.

[65] Ding Wang, Debiao He, Haibo Cheng, and Ping Wang. 2016. fuzzyPSM: A New
Password Strength Meter Using Fuzzy Probabilistic Context-Free Grammars.
In Conference on Dependable Systems and Networks (DSN ’16). IEEE Computer
Society, Toulouse, France, 595–606.

[66] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi Huang. 2016. Targeted
Online Password Guessing: An Underestimated Threat. In ACM Conference on
Computer and Communications Security (CCS ’16). ACM, Vienna, Austria, 1242–
1254.

[67] Miranda Wei, Maximilian Golla, and Blase Ur. 2018. The Password Doesn’t Fall
Far: How Service Influences Password Choice. InWho Are You?! Adventures in
Authentication Workshop (WAY ’18). USENIX, Baltimore, Maryland, USA.

[68] Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. 2010. Testing
Metrics for Password Creation Policies by Attacking Large Sets of Revealed Pass-
words. In ACM Conference on Computer and Communications Security (CCS ’10).
ACM, Chicago, Illinois, USA, 162–175.

[69] Matt Weir, Sudhir Aggarwal, Breno De Medeiros, and Bill Glodek. 2009. Password
Cracking Using Probabilistic Context-Free Grammars. In IEEE Symposium on
Security and Privacy (SP ’09). IEEE, Berkeley, CA, USA, 391–405.

[70] Daniel Lowe Wheeler. 2016. zxcvbn: Low-Budget Password Strength Estimation.
In USENIX Security Symposium (SSYM ’16). USENIX, Austin, Texas, USA, 157–173.

http://www.seleniumhq.org
https://haveibeenpwned.com/Passwords
https://haveibeenpwned.com/Passwords
http://appium.io
https://keepersecurity.com
https://keepersecurity.com
https://www.lastpass.com
https://www.lastpass.com
https://github.com/cupslab/neural_network_cracking
https://pythonhosted.org/pyobjc/
https://pythonhosted.org/pyobjc/
http://keepass.info/help/kb/pw_quality_est.html
http://keepass.info/help/kb/pw_quality_est.html
http://keepass.info/help/v2_dev/scr_index.html
http://keepass.info/help/v2_dev/scr_index.html
https://www.enpass.io/release-notes/windowspc/
https://www.enpass.io
https://www.enpass.io
https://www.bloomingpassword.fun
https://github.com/cupslab/password_meter
https://github.com/cupslab/password_meter
http://www.nytimes.com/2010/01/21/technology/21password.html
http://www.nytimes.com/2010/01/21/technology/21password.html

A METER COMPARISON
In the following, we list the full results of our data collection. We separated the five categories Academic Proposals, Password Managers,
Operating Systems,Websites, and Previous Work into two tables. A colorful version that allows easier comparison can be found online [29].

A.1 Academic Proposals, Password Managers, and Operating Systems

Table 5: We computed the weighted Spearman correlation as the best similarity score (cf. Section 5). The table lists the online
use case on the left, the offline use case on the right. We highlighted if and on how many bins a meter quantized its output.
Additionally, we list whether a meter runs on client- or server-side and how the meter visualizes the strength to the user.

Online Attacker Offline Attacker
ID Meter Type Quant. Visu. RockYou LinkedIn 000Webhost RockYou LinkedIn 000Webhost

Academic Proposals

1A Comprehensive8 [61] C - - -0.652 -0.589 0.251 -0.476 -0.616 0.441
1B Comprehensive8 [61] C Q5 Text -0.331 -0.084 0.409 -0.128 -0.123 0.421
2 Eleven [22] C - - 0.670 0.912 0.492 0.755 0.951 0.733
3 LPSE [32] C Q3 - 0.584 0.669 0.508 0.544 0.718 0.693
4A Markov (OMEN) [13] S - - 0.721 0.697 0.410 0.701 0.669 0.660
4B Markov (Single) [27] S - - 0.718 0.998 0.817 0.828 0.991 0.872
4C Markov (Multi) [27] S - - 0.721 0.998 0.902 0.997 0.995 0.777
5A NIST [11] C - - 0.670 0.912 0.492 0.755 0.951 0.733
5B NIST (w. Dict.) [11] C - - 0.669 0.910 0.472 0.756 0.953 0.816
6 PCFG (fuzzyPSM) [65] S - - 1.000 0.994 0.963 0.998 0.999 0.899
7A RNN Generic [46] C - - 0.632 0.542 0.427 0.535 0.520 0.800
7B RNN Generic (Web) [59] C - - 0.473 0.649 0.421 0.449 0.688 0.777
7C RNN Target [46] C - - 0.951 0.913 0.965 0.896 0.860 0.885
7D RNN Target (w. Bloom) [46] C - - 0.951 0.913 0.965 0.896 0.860 0.882
8A zxcvbn (Guess Number) [70] C - - 0.989 0.990 0.554 0.989 0.999 0.868
8B zxcvbn (Score) [70] C Q5 - 0.341 0.490 0.359 0.373 0.567 0.817

Password Managers

9A 1Password (Web) C - Bar 0.276 0.433 0.441 0.401 0.621 0.807
9B 1Password (Web) C Q5 Text (Int.) 0.276 0.433 0.407 0.401 0.621 0.813
10A Bitwarden (Web) C - Bar -0.635 -0.490 0.418 -0.457 -0.540 0.676
10B Bitwarden (Web) C Q3 Text (Int.) 0.258 0.372 0.494 0.333 0.340 0.725
11 Dashlane 5.5 (Windows) C - Text 0.686 0.785 0.241 0.698 0.820 0.410
12 Enpass 5.6.8 (Windows)5 C Q5 Bar a. Text [Z] 0.341 0.490 0.359 0.373 0.567 0.817
13A KeePass 2.38 (Windows) C - Bar 0.856 0.785 0.393 0.884 0.870 0.744
13B KeePass 2.38 (Windows) C Q5 Text 0.000 0.000 0.045 0.003 0.002 0.321
14A Keeper (Web) C Q5 Bar 0.200 0.258 0.400 0.223 0.238 0.589
14B Keeper (Web) C - Score (Int.) 0.805 0.719 0.284 0.869 0.824 0.476
15 LastPass (Web) C Q5 Bar [Z] 0.197 0.428 0.266 0.232 0.510 0.717
16A LogMeOnce (Web) C - Bar 0.425 0.559 0.245 0.410 0.602 0.503
16B LogMeOnce (Web) C Q5 Text 0.053 0.138 0.315 0.070 0.130 0.541
17A RoboForm 8.4.8.8 (Chrome) C Q4 Text [Z] 0.740 0.773 0.477 0.711 0.827 0.759
17B RoboForm 8.4.8.8 (Chrome) C - Score (Int.) [Z] 0.685 0.932 0.528 0.781 0.962 0.725
17C RoboForm Business (Web) C Q6 Text [Z] 0.523 0.693 0.402 0.553 0.727 0.738
18 True Key 2.8.5711 (Chrome) C Q5 Text [Z] 0.341 0.490 0.359 0.373 0.567 0.817
19A Zoho Vault (Web) C Q3 Bar a. Text 0.088 0.134 0.120 0.104 0.107 0.506
19B Zoho Vault (Web) C - Score (Int.) 0.464 0.502 0.509 0.450 0.468 0.727

Operating Systems

20A macOS High Sierra 10.13.4 C - Bar -0.667 -0.513 0.450 -0.488 -0.569 0.726
20B macOS High Sierra 10.13.4 C Q4 Text 0.072 0.204 0.469 0.094 0.171 0.728
20C macOS High Sierra 10.13.4 C - Bar (Hover) -0.667 -0.513 0.449 -0.488 -0.569 0.727
21A Ubuntu 18.04 (Ubiquity) C Q5 Text -0.849 -0.808 -0.141 -0.792 -0.851 0.132
21B Ubuntu 18.04 (Ubiquity) C - Score (Int.) -0.818 -0.817 -0.189 -0.779 -0.855 0.002

Type: C=Client, S=Server, H=Hybrid;
Quantization: Q3–Q6=Number of bins, e. g., Q5=[Terrible, Weak, Good, Excellent, Fantastic];

Visualization: Bar=Bar-based meter, Text=Textual strength description, (Int.)=Internal value not displayed, [Z]=zxcvbn-based meter.

5Not crawled, analysis showed the use of plain zxcvbn (Score) MID 8B.

A.2 Websites and Comparison with Previous Work

Table 6: We computed the weighted Spearman correlation as the best similarity score (cf. Section 5). The table lists the online
use case on the left, the offline use case on the right. We highlighted if and on how many bins a meter quantized its output.
Additionally, we list whether a meter runs on client- or server-side and how the meter visualizes the strength to the user.

Online Attacker Offline Attacker
ID Meter Type Quant. Visu. RockYou LinkedIn 000Webhost RockYou LinkedIn 000Webhost

Websites

22 Airbnb C Q3 Text 0.054 0.113 0.331 0.063 0.141 0.605
23A Apple H Q4 Bar 0.000 0.020 0.102 0.000 0.046 0.345
23B Apple H Q3 Text 0.000 0.020 0.102 0.000 0.046 0.345
24 Baidu S Q3 Text 0.829 0.828 0.154 0.825 0.875 0.350
25A Best Buy C - Bar 0.676 0.912 0.424 0.765 0.949 0.645
25B Best Buy C Q3 Text 0.074 0.102 0.331 0.077 0.095 0.511
26A China Railway (12306.cn) C Q3 Bar 0.161 0.226 0.346 0.166 0.197 0.571
27A Dropbox C Q4 Bar [Z] 0.056 0.094 0.087 0.076 0.108 0.611
28A Drupal 8.5.3 C - Bar 0.677 0.788 0.490 0.688 0.822 0.732
28B Drupal 8.5.3 C Q4 Text 0.022 0.019 0.157 0.022 0.039 0.356
29 eBay (PW Change) H Q4 Bar 0.031 0.120 -0.373 0.157 0.081 -0.146
30 Facebook (PW Change) C Q4 Text -0.066 0.372 0.498 0.118 0.339 0.725
31A FedEx C Q3 Bar 0.000 0.090 0.147 0.007 0.071 0.345
31B FedEx C Q5 Score (Int.) 0.000 0.090 0.147 0.007 0.071 0.345
32A Google H Q5 Bar 0.522 0.692 0.586 0.551 0.729 0.763
33 Have I Been Pwned? S - Text 0.992 0.996 0.739 0.991 0.997 0.939
34 The Home Depot C Q3 Bar a. Text 0.362 0.548 0.475 0.420 0.604 0.731
35A Microsoft (v3)6 C Q4 Bar 0.521 0.694 0.487 0.551 0.726 0.724
35B Microsoft (v3)6 C - Score (Int.) 0.670 0.912 0.491 0.755 0.951 0.734
36 reddit C Q5 Bar [Z] 0.341 0.490 0.359 0.373 0.567 0.817
37 Sony Entertainment Network C Q3 Bar 0.115 0.185 0.188 0.128 0.169 0.511
38 Sina Weibo C Q4 Text 0.427 0.779 0.544 0.500 0.803 0.502
39 Tumblr S Q6 Bar 0.499 0.576 0.165 0.550 0.514 0.394
40A Twitch C Q5 Bar [Z] 0.197 0.428 0.266 0.232 0.510 0.717
40B Twitch C Q3 Text [Z] 0.197 0.427 0.300 0.232 0.510 0.712
41A Twitter H - Bar 0.643 0.637 0.509 0.581 0.674 0.769
41B Twitter H Q5 Score (Int.) 0.554 0.629 0.585 0.526 0.665 0.681
42A Yandex H - Bar -0.392 -0.082 0.494 -0.224 -0.117 0.733
42B Yandex H Q4 Text 0.370 0.724 0.502 0.475 0.775 0.799

de Carné de Carnavalet and Mannan (2014) [16]

23C Apple H Q4 - 0.521 0.694 0.462 0.551 0.726 0.707
26B China Railway (12306.cn) C Q3 - 0.160 0.226 0.346 0.165 0.197 0.571
27B Dropbox C Q5 - [Z] 0.085 0.104 0.121 0.121 0.131 0.654
28C Drupal C Q4 - -0.187 0.256 0.148 -0.095 0.233 0.350
31C Fedex C Q5 - 0.000 0.090 0.147 0.007 0.071 0.345
32B Google S Q5 - 0.521 0.694 0.507 0.551 0.726 0.717
35C Microsoft (v3) C Q4 - 0.521 0.694 0.487 0.551 0.726 0.724
43 PayPal H Q4 - 0.521 0.694 0.444 0.552 0.727 0.736
44 QQ C Q4 - 0.844 0.874 0.492 0.867 0.918 0.721
41C Twitter C Q6 - 0.223 0.638 0.514 0.271 0.674 0.658
45 Yahoo! C Q4 - -0.187 0.256 0.142 -0.095 0.233 0.346
42C Yandex S Q4 - 0.150 0.581 0.398 0.217 0.624 0.709

Type: C=Client, S=Server, H=Hybrid;
Quantization: Q3–Q6=Number of bins, e. g., Q5=[Terrible, Weak, Good, Excellent, Fantastic];

Visualization: Bar=Bar-based meter, Text=Textual strength description, (Int.)=Internal value not displayed, [Z]=zxcvbn-based meter.

6MID 35A/35B have been deprecated by Microsoft in 2016.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Password Choice
	2.2 Password Guessing
	2.3 Password Strength

	3 Password Strength Meters
	3.1 Approximating Strength
	3.2 Measuring Accuracy

	4 Evaluated Password Datasets
	4.1 Influencing Factors
	4.2 Datasets
	4.3 Reference

	5 Similarity Measures
	5.1 Test Cases
	5.2 Testing Different Metrics
	5.3 Reference Validation
	5.4 Recommendation
	5.5 Sampling

	6 Evaluation
	6.1 Online Guessing
	6.2 Offline Guessing
	6.3 Selected Meters
	6.4 Querying Meters

	7 Results
	7.1 Overall Performance
	7.2 Effect of Quantization
	7.3 Performance Over Time
	7.4 Recent Proposals and Future Directions
	7.5 Limitations

	8 Conclusions
	References
	A Meter Comparison
	A.1 Academic Proposals, Password Managers, and Operating Systems
	A.2 Websites and Comparison with Previous Work

