

Towards Quantum Large-Scale Password Guessing on Real-World Distributions CANS, 2021

M. Dürmuth¹, M. Golla², P. Markert¹, A. May¹, and **L. Schlieper**¹ Ruhr University Bochum¹, Max Planck Institute for Security and Privacy²

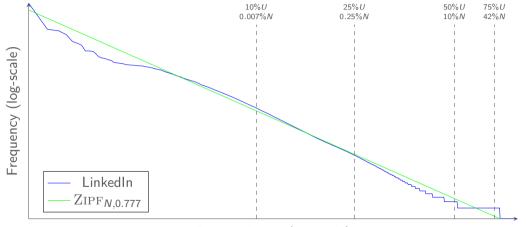
iefördert durch DFG Deutsche Forschungsgemeinscha

Introduction

Scenario:

- Passwords are highly biased.
- Increasingly powerful quantum computers emerge.

Setting:


- Access to a password leak L with
 - $\ell_u := (\text{user } u, \text{salt } s_u, \text{password-hash } h(s_u, pw_u)) \in L.$
- Knowledge about passwords and distribution $\mathbb{P}_u[u \sim pw_i] = p_i$.
- Access to a powerful quantum computer.

Questions:

- Can we combine the advantage of knowing the distribution of the passwords and the usage of quantum computers?
- How fast can we determine a fraction of all user-password pairs?

Approximation

Password rank (log-scale)

Results

Setting	Distribution	Average required Hash Evaluations per User				
		10 %	25 %	50 %	75 %	100%
Classical	Ideal	\sim 2 years	52 600 000	45 100 000	37 500 000	30 000 000
	$ m ZIPF_{0.777}$	~ 10 hours	473 000	3 430 000	8 800 000	11100000
	LinkedIn \mathcal{D}_{Pw}	~ 10 hours	482 000	6 820 000	14 300 000	14600000
Quantum	Ideal	\sim 2 hours	7 750	7 750	7 750	7 750
	$ m ZIPF_{0.777}$	\sim 3 min	613	1880	3710	6 0 3 0
	$LinkedIn\ \mathcal{D}_Pw$	\sim 3 min	622	2 5 2 0	4 640	6 380

• Greatest advantage for small numbers.

• Later good passwords turn the tide.

Assuming h required 1 sec classically as well as quantumly.

Conclusion

We have shown that:

- We can combine the advantage of quantum computers and advantage from distribution.
 - $\circ~$ We can carry over a square-root of the speed-up.
- Quantum computers can be an even greater potential threat.

Countermeasures:

- Use password managers.
- Increase computation-costs of *h*.

Thank you for your attention.